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Message Passing (Graph) Neural Network

* [n our previous research?!, we generalize spatial and spectral GNN by

H(;yc(s)H(g)W(g:s)).

Convolution Support Node Features Trainable Parameters

* Spatial Methods are defined by C matrices
* Spectral Method defined by B; ; = ®;()\;).
* Where transition can be written by C'*) = U diag(®4(X))U .

1 Balcilar et al. Analyzing the expressive power of graph neural networks in a spectral perspective. ICLR2021.



Expressive Power of GNN

* Universality of the GNN depends on
* ability to produce different output for non-isomorphic graphs.
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e 1-WL=2-WL <3-WL<4-WL<......<k-WL
* We can classify GNN by equivalence of WL test order

e k>2, k-WL GNN needs
* O(n™k-1)) memory, O(n”k) CPU time



1-WL GNN (MPNN) versus k-WL GNN

* Pros: * Pros:
* Linear memory&time complexity. * Can distinguish up to k-WL equivalent graphs.
* Local update schema. . * Can count some substructures related to k.
) Est{;;?iln%rlcj)il:lhear&secg;T—s\’fvcl)f graphs can * Can solve some combinatorial problems.
* Their results are still competitive!
* Cons:
* Cons: * O(n*(k-1)) memory, O(n”k) CPU time
 Maps 1-WL equivalent graphs to the * Non-local update schema.

exact the same point on latent space.

e Cannot count some substructures that
is informative many graph problems.

e Cannot solve many combinatorial
problems on graphs that may needed.

* Unable to learn frequency relations.

* Their results are not better than 1-WL GNN on
many realistic problems.
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e Methods need massive data
augmentation, they diverge slow.

e Add random noise to the nodes as

extra node feature.
H OW tO * Add unique identifier to the nodes as
extra node feature.
Increase the
ExprESSIVe  Methods need feature engineering.
* Add features that cannot be

POWGI’ Of obtained by MPNN as extra node

feature.

M P N N * Weight sharing w.r.t some

predefined substructures.




Characterization of WL
Test with MATLANG

* Recently, the connection between Matrix
Language and WL-test was found.

Definition 1. M L(L) is a matrix language with an al-
lowed operation set L = {op,...op,}, where op; €
{.,+,7 ,diag,tr,1,®, x, f}. The possible operations are
matrices multiplication and addition, matrix transpose,
vector diagonalization, matrix trace computation, column
vector full of 1, element-wise matrix multiplication, ma-
trix/scalar multiplication and element-wise custom function
operating on scalars or vectors.

Definition 2. e(X) € R is a sentence in M L(L) if it con-
sists of any possible consecutive operations in L, operating
on a given matrix X and resulting in a scalar value.

As an example, e(X) = 1" X?21 is a sentence of M L(L)
with £ = {.,7 , 1}, computing the sum of all elements of
square matrix X .



Characterization of
WL Test with
MATLANG

Remark 1. Two adjacency matrices are indistinguishable
by the 1-WL test if and only if e(Ag) = e(Ap) for all
e € Ly with £y = {..' ,1,diag}. Hence, all possible
sentences in L are the same for 1-WL equivalent adjacency
matrices. Thus, Ac =1_wr Ay < Ag =wmrL(c,) An.
(see Theorem 7.1 in (Geerts, 2020))

Remark 2. ML(Ls) with Lo = {.,' ,1,diag,tr} is
strictly more powerful than L., i.e., than the 1-WL test,

but less powerful than the 3-WL test. (see Theorem 7.2 and
Example 7.3 in (Geerts, 2020))

* Three different Matrix Language and their
connection to the WL test are given by:

Remark 3. Two adjacency matrices are indistinguishable
by the 3-WL test if and only if they are indistinguishable by
any sentence in M L(L3) with L3 = {.," ,1,diag,tr,®}.
Thus, A =s_wr Ag < Ac =ML(Ls) Apg. (see Theo-
rem 9.2 in (Geerts, 2020))

Remark 4. Enriching the operation set to LT = L U
{+, %, f} where L € (L1, L2, L3) does not improve the ex-
pressive power of the language. Thus, Ag =nrpr) A <
AG =mrc+) An. (see Proposition 7.5 in (Geerts, 2020))



Theorem 1. MPNNs such as GCN, GAT, GraphSage, GIN

(defined in Appendix H) cannot go further than operations
in L. Thus, they are not more powerful than the 1-WL test.

Theorem 2. Chebnet is more powerful than the 1-WL test
if the Laplacian maximum eigenvalues of the non-regular
graphs to be compared are not the same. Otherwise Chebnet
is not more powerful than 1-WL.

(0

Figure 1. Decalin (G) and Bicyclopentyl (H) graphs are £1 and
also 1-WL equivalent, but Chebnet can distinguish them.

How Powerful are
MPNNSs?

* Using connection between MATLANG
and WL test, we proved these theorems.

A A VLT

Figure 2. Sample of patterns: 3-star, triangle, tailed triangle and
4-cycle graphlets used in our analysis.

Theorem 3. 3-star graphlets can be counted by sentences
in L.

Theorem 4. Triangle and 4-cycle graphlets can be counted
by sentences in L3 .

Theorem 5. Tailed triangle graphlets can be counted by
sentences in L .



New 1-WL MPNN with MATLANG

* Any GNN which can produce all sentencesin £ = {_jT 1, diag}
have exact the same power of 1-WL test.

* GNNML1:

H(H-l):J(H(E)W(I=1)+AH(E)W(E=2)_|_H(E)W(LB)@H(I)WUA))

Theorem 6. GNNMLI can produce every possible sen-
tences in M L(L1) for undirected graph adjacency A with
monochromatic edges and nodes. Thus, GNNMLI is exactly
as powerful as the 1-WL test.



Beyond 1-WL MPNN with MATLANG

* Any GNN which can produce all sentences in
_ T :
L3 =A.",1,diag,tr,®}

have exact the same power of 3-WL test.

* If we add ability to calculate

{tr,®}
on to GNNML1, we can go beyond 1-WL.



How Trace operator helps?
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How Elementwise Martix Mul operator helps?
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Beyond 1-WL MPNN with MATLANG

* Any GNN which can produce all sentences in

Ls={.,",1,diag, tr,®}

have exact the same power of 3-WL test.

* If we add ability to calculate { tr, ®}
on GNNML1, we can go beyond 1-WL.

* However, MPNN does not keep power of adjacencies explicitly, thus cannot have
its trace or elementwise multiplication.

* For instance, MPNN can have C31, with 3 layers of network by C(C(C1))



Beyond 1-WL MPNN with MATLANG

e Our solution is to design graph Theorem 7. A convolution support given by

convolution supports which can be C'®) = Udiag(®s(\)U ", (3)
written by power series of graph where BE) = €Ep=b=TF)2), f. € Nonins Aas]
adjacency (Qr gra ph la p|acien). is a scalar design parameter of each convolution support
. and b > 0 is a general scalar design parameter, can be

* We have S+1 number of predefl ned expressed as a linear combination of all powers of graph
- el . .. , , , (4)
initial graph convolution matrix in Laplacian (or adjacency) as follows, with aig = =%
preprocessing step such ds, () — Ofs,n. +f1351.+0:'s=2. T 4)
C'0) — T

Cfﬁl) — M Ud-iag((bl(/\))(,ﬂ

HSY _ Ad o~ TT. _ r T We used fixed 1-hop receptive field
C"S) = M © Udiag(®s(\))U VA4



Beyond 1-WL MPNN with MATLANG

* We can learn necessary power of convolution support by MLP as in;

C = mips (mip(C")|mlips(C") © mips(C"))

Initial sparse convolution supports Learned sparse convolution supports

O — [Cr(1)| o ‘C.r(s)] c RnPXnXS o= [C(l)‘ o |C(S)} c RnXnXS

* Then define GNNML3 forward calculations as;

g+l _ J(Z(C(S)H(E)W(E=S))|Wblp5(H(”)@Tﬂlpﬁ(ﬂ-(z)))

]



Pros and Cons of GNNML3

* Pros

* Except pre-procesing step, it needs linear time&memory
complexity.

* Graph convolution supports are aware of frequency of
signal on graph.

e Since it can produce elementwise mul and trace of
necessary power of adjacency, it is theoretically more
powerful than 1-WL, experimentally equal to 3-WL.

* Because of receptive field mask, it has local update schema.

e Cons

* Needs eigendecomposition in preprocessing step.

* Needs predefined frequency responses of graph
convolution.



Results

* How many pairs of non-isomorphic simple

graphs that are either 1-WL or 3-WL equivalent

are not distinguished by the models?
e Can the models generalize the counting of some

substructures in a given graph? Table 1. Number of undistinguished pairs of graphs in graph8c,

sr25 and EXP datasets and binary classification accuracy on EXP
dataset. An ideal method does not find any pair similar and classi-
fies graphs with 100% accuracy. The number of pairs is 61M for
graph8c, 105 pairs for sr25 and 600 for EXP.

Table 2. Median of test set MSE error for graphlet counting prob-
lem on random graph dataset over 10 random runs.

MODEL 3-STARS CUSTOM TRIANGLE TAILED-TRI 4-CYCLES
MODEL GRAPHSEC SR25 EXP EXP-CLASSIFY

MLP 1.0E-4  4.58E-1  3.13E-1 2.22E-1 1.73E-1

GCN 1.0E-4  3.22E-3  2.43E-1 1.42E-1 1.14E-1 MLP 293K 105 600 30%
GAT 1.0E-4  4.57E-3  2.47E-1 1.44E-1 1.12E-1 GCN 4775 105 600 50%
GIN 1.0E-4  1.47E-3  2.06E-1 1.18E-1 1.21E-1 GAT 1828 105 600 50%
CHEBNET 1.0E-4  7.68E-4  2.01E-1 1.15E-1 9.60E-2 GIN 386 105 600 50%
PPGN 1.0E-4  9.19E-4  1.00E-4 2.61E-4 3.30E-4 CHEBNET 44 105 71 82%
GNNML1  1.0E-4  2.75E-4  2.45E-1 1.32E-1 1.14E-1 PPGN 0 105 0 100%
GNNML3  1.0E-4 7.24E-4  4.44E-4 3.18E-4 6.62E-4 GNNML1 333 105 600 50%

GNNML3 0 105 0 100%




Results

e Can the models generalize downstream graph

* Can the models learn low-pass, high-pass and classification and regression tasks?

band-pass filtering effects and generalize the
classification problem according to the frequency

of the signal? Table 4. Results on Zinc12K and MNIST-75 datasets. The values
are the MSE for Zinc12K and the accuracy for MNIST-75. Edge
features are not used even if they are available in the datasets. For
Zinc12K, all models use node labels. For MNIST-75, the model

uses superpixel intensive values and node degree as node features.

Table 3. Spectral expressive analysis results. R? for LowPass,
HighPass and BandPass node regression tasks, accuracy on graph
classification task. Results are median of 10 different runs.

MODEL Low-PASS HIGH-PASS BAND-PASS CLASSIFY MODEL ZINCI2K MNIST-75
MLP 0.9749 0.0167 0.0027 50.0% MLP 0.5869 £ 0.025  25.10% £ 0.12
GCN 0.9858 0.0863 0.0051 77.9% GCN 0.332240.010  52.80% + 0.31
GAT 0.9811 0.0879 0.0044 85.3% GAT 0.3977 £+ 0.007  82.73% =+ 0.21

GIN 0.3044 + 0.010  75.23% + 0.41
GIN 0.9824 0.2934 0.0629 87.6%

CHEBNET 0.3569 4+ 0.012 92.08% =+ 0.22
CHEBNET 0.9995 0.9901 0.8217 98.2% PPGN 0.1589 + 0.007 90.04% + 0.54
PPGN 0.9991 0.9925 0.1041 91.2% GNNML1 03140+ 0.015 84.21% + 1.75
GNNML1 0.9994 0.9833 0.3802 92.8% GNNML3 0.1612 + 0.006 91.98% -+ 0.18
GNNML3 0.9995 0.9909 0.8189 97.8%




Conclusion

Except preprocessing step, we reach 3-WL
expressive power with MPNN.

GNNML3 is as good as spectral graph convolution
on problem depends on graph signal frequency.

GNNML3 is as good as 3-WL equivalent GNN on
problems depends on graph substructure
counting.

GNNML3 provides compromises between
frequency awareness and structural awareness.

It would give better result on mix problems
(problem agnostic)



