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Contributions

•A new Message Passing (Graph) Neural Network
(MPNN) that has 3-WL expressive power without
feature engineering, while keeping complexity linear.
•By translating the insights of MATLANG to the
GNN world, we show the expressive power of some
GNN models and what we need in order to count
some graphlets.

Introduction

•Universality of the Graph Neural Networks (GNN)
depends on permutational invariance and ability to
produce different outputs for non-isomorphic graphs.

•Expressive power of GNNs were evaluated using
equivalence of Weisfeiler-Lehman test order.
•MPNN that has linear time and memory complexity is
known to be 1-WL equivalent GNN.
• 1-WL equivalent methods cannot count some
substructures in the graph which is crucial for many
graph learning problems.
•For more expressive power GNN, we need to mimic
higher order WL-test in exchange of increasing
complexity exponentially.
•PPGN is the best known 3-WL equivalent GNN which
has O(n3) time and O(n2) memory complexity.

Message Passing Neural Networks

•Both Spectral and Spatial MPNNs are generalized by:

H (l+1) = σ
(∑

s
C(s)H (l)W (l,s)

)
(1)

• Spatial GNNs are shown by convolution supports C(s).
• Spectral GNNs designed by frequency response Φs(λ),
that can define supports by C(s) = U(Φs(λ))U>.

•As long as C(s) are sparse, MPNN has linear time and
memory complexity wrt number of nodes.

Characterization of Weisfeiler-Lehman

• 1-WL=2-WL <3-WL<4-WL<......<k-WL
•Recently, Matrix Language MATLANG was proposed to
charactize WL test.
•Definition1 ML(L) is a matrix language with an
allowed operation set L = {op1, . . . opn}, where
opi ∈ {.,+,> , diag, tr,1,�,×, f}.
•Definition2 e(X) ∈ R is a sentence in ML(L) if it
consists of any possible consecutive operations in L,
operating on a given matrix X and resulting in a scalar.
•Remark1 Two adjacency matrices are indistinguishable
by the 1-WL test if and only if e(AG) = e(AH) for all
e ∈ L1 with L1 = {.,> ,1, diag}.
•Remark2 ML(L2) with L2 = {.,> ,1, diag, tr} is
strictly more powerful than the 1-WL test, but less
powerful than the 3-WL test.
•Remark3 Two adjacencies are indistinguishable by the
3-WL test if and only if they are indistinguishable by
any sentence in L3 = {.,> ,1, diag, tr,�}
•Remark4 Enriching the operation set to
L+ = L ∪ {+,×, f} does not improve the expressive
power of the language.

How Powerful are MPNNs?

•Theorem1 MPNNs such as GCN, GAT, GraphSage,
GIN cannot go further than operations in L+

1 . Thus,
they are not more powerful than the 1-WL test.
•Theorem2 Chebnet is more powerful than the 1-WL
test if the Laplacian maximum eigenvalues of the
non-regular graphs to be compared are not the same.
Otherwise Chebnet is not more powerful than 1-WL.

•Theorem 3,4,5 3-star graphlets can be counted by
sentences in L+

1 , Triangle and 4-cycle graphlets can be
counted by sentences in L+

2 , Tailed triangle graphlets
can be counted by sentences in L+

3 .

MPNN Beyond 1-WL

•MATLANG says any GNN that can produce all possible
sentences from L1 = {.,> ,1, diag} has exactly 1-WL
expressive power.
•Theorem6 GNNML1 given in the equation can
produce every possible sentences in ML(L1). Thus,
GNNML1 is exactly as powerful as the 1-WL test.

H (l+1)=σ(H (l)W (l,1)+AH (l)W (l,2)+H (l)W (l,3)�H (l)W (l,4)) (2)

•MATLANG says GNN should also produce sentences
with {tr,�} operations to have 3-WL test power.
• Since tr(A5

G) 6= tr(A5
H) for pair of graphs in the figure,

trace operation can distinguish them.

•Trace is not helpful for cospectral graph pairs. But �
operation helps. For instance this sentence for given
graphs. 1>((AG � A2

G)21)2 6= 1>((AH � A2
H)21)2

•MPNN does not keep any power of adjacency explicitly.
It can not apply trace or elementwise multiplication.
•We proposed to design convolution support in spectral
domain in preprocessing step, to be able to learn
necessary power of adjacency.
•Theorem7 A convolution support given by

C ′(s) = Udiag(Φs(λ))U>,
where Φs(λ) = exp(−b(λ− fs)2), fs ∈ [λmin, λmax]
and b > 0, can be expressed as a linear combination of
all powers of graph Laplacian (or adjacency) as follows,
with αs,i = Φ(i)

s (0)
i! :

C ′(s) = αs,0L
0 + αs,1L

1 + αs,2L
2 + . . . .

•Each C(s) consists of different linear coefficients of
power series of adjacency. Necessary masked power of
adjacencies their trace and multiplications can be
obtained where M = A + I by:
C = M �mlp4 (mlp1(C ′)|mlp2(C ′)�mlp3(C ′)) ,

•GNNML3’s one layer forward calculations becomes:

H (l+1)=σ
(∑

s(C(s)H (l)W (l,s))|mlp5(H (l))�mlp6(H (l))
)

(3)

Experimental Results

•Expressive Test How many pairs of non-isomorphic
graphs are not distinguished by the models?
Model MLP GCN GAT GIN Chebnet PPGN GNNML1 GNNML3
graph8c 293K 4775 1828 386 44 0 333 0
sr25 105 105 105 105 105 105 105 105
EXP 600 600 600 600 71 0 600 0
EXP-class 50% 50% 50% 50% 82% 100% 50% 100%

•Graphlet Counting Can the models generalize the
counting of some substructures in a given graph?
Model MLP GCN GAT GIN Chebnet PPGN GNNML1 GNNML3
3-stars 1.0e-4 1.0e-4 1.0e-4 1.0e-4 1.0e-4 1.0e-4 1.0e-4 1.0e-4
triangle 3.1e-1 2.4e-1 2.5e-1 2.1e-1 2.0e-1 1.0e-4 2.4e-1 4.4e-4
tailed-tri 2.2e-1 1.4e-1 1.4e-1 1.2e-1 1.1e-1 2.6e-4 1.3e-1 3.2e-4
4-cycles 1.7e-1 1.1e-1 1.1e-1 1.2e-1 9.6e-2 3.3e-4 1.1e-1 6.6e-4

•Spectral Ability Can the models learn low-pass,
high-pass and band-pass filtering effects?

Model MLP GCN GAT GIN Chebnet PPGN GNNML1 GNNML3
Loss-pass 0.9749 0.9858 0.9811 0.9824 0.9995 0.9991 0.9994 0.9995
High-pass 0.0167 0863 0.0879 0.2934 0.9901 0.9925 0.9833 0.9909
Band-pass 0.0027 0.0051 0.0044 0.0629 0.8217 0.1041 0.3802 0.8189
Classify 50.0% 77.9% 85.3% 87.6% 98.2% 91.2% 92.8% 97.8%

Conclusion

•Except eigendecomposition in preprocessing step,
GNNML3 has linear complexity.
•GNNML3 is as good as spectral graph convolution on
problems depending on graph signal frequency.
•GNNML3 is as good as 3-WL equivalent GNN on
problems depending on graph substructure counting
and graph isomoprhism test.
•GNNML3 provides trade-offs between frequency
awareness and structural awareness. It would give
better result on mix problems.
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