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Contributions
•Bridging the gap between spectral and spatial
domains in GNN by demonstrating the equivalence
of graph convolution processes.
•Propose a new general framework and taxonomy for
GNNs.
•Provide theoretical and empirical spectral analysis of
GNN models.

Introduction

•Universality of the GNN depends on permutational
invariance and ability to produce different outputs for
non-isomorphic graphs.

•Expressive power of GNNs were evaluated using
equivalence of Weisfeiler-Lehman test order so far.
•MPNN is known to be 1-WL equivalent and WL test
order does not tell any differences between MPNNs.
• Since GNN can be seen as a signal processing pipeline,
analyzing GNN models in a spectral point of view can
bring a new perspective on their expressive power.

Spectral and Spatial GNNs

•Spectral GNN: Relies on eigendecomposition of
graph Laplacian:
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•To overcome drawbacks, trainable weights are
parametrized by F (l,j)
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•Spatial GNN: Consider an agg operator, which
aggregates the neighborhood nodes, and an upd
operator updates the concerned node as follows:
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Bridging Spatial and Spectral Domains

•upd(x, y) = σ(x + y), agg is a sum of neighbor nodes
and gi applies a linear transformation, Spatial GNN can
be written by our general framework by:

H (l+1) = σ
(∑

s
C(s)H (l)W (l,s)

)

•Theorem Spectral GNN parameterized with B of
entries Bi,j = Φj(λi) is a particular case of our general
framework with the convolution kernel C(s):

C(s) = U(Φs(λ))U>.

•Corollary The frequency profile of a graph convolution
support can be defined in spectral domain by:

Φs(λ) = diag−1(U>C(s)U).

New Taxonomy of GNN

•Definition 1: A Trainable-support is a Graph
Convolution Support C(s) with at least one trainable
parameter that can be tuned during training. If C(s)

has no trainable parameters, i.e. when the supports are
pre-designed, it is called a fixed-support graph
convolution.
•Definition 2: Spectral-designed graph convolution
refers to a convolution where supports are written as a
function of eigenvalues (Φs(λ)) and eigenvectors (U)
of the corresponding graph Laplacian. Thus, each
convolution support C(s) has the same frequency
response Φs(λ) over different graphs. Convolution out
of this definition is called spatial-designed graph
convolution.

Classification of GNN models and their theoretical frequency responses.

Design Support Type Convolution Matrix Frequency Response
MLP Spectral Fixed C = I Φ(λ) = 1
GCN Spatial Fixed C = D̃−0.5ÃD̃−0.5 Φ(λ) ≈ 1− λp/(p + 1)
GIN Spatial Trainable C = A + (1 + ε)I Φ(λ) ≈ p

(
1+ε
p + 1− λ

)
GAT Spatial Trainable C(s)

v,u = ev,u/
∑
k∈Ñ (v) ev,k NA

CayleyNet Spectral Trainable
C(1) = I

C(2r) = Re(ρ(hL)r)
C(2r+1) = Re(iρ(hL)r)

Φ1(λ) = 1
Φ2r(λ) = cos(rθ(hλ))
Φ2r+1(λ) = − sin(rθ(hλ))

ChebNet Spectral Fixed
C(1) = I

C(2) = 2L/λmax − I
C(s) = 2C(2)C(s−1) − C(s−2)

Φ1(λ) = 1
Φ2(λ) = 2λ/λmax − 1
Φs(λ) = 2Φ2(λ)Φs−1(λ)− Φs−2(λ)

ChebNet and CayleyNet Freq. Res. GCN and GIN Freq. Res.

GAT Simulated Freq. Res.
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Conclusion of Spectral Analysis

• Spatial designs are nothing but just low-pass filters!
• Spectral designs cover the spectrum well but they do
not have band specific filters.

Experimental Results

•2DGrid Graph is a node regression problem for
low-pass, band-pass and high-pass filtered image.
Results are in sum of squared error.

Prediction Target GCN GIN GAT ChebNet
Low-pass filter (Φ1) 15.55 11.01 10.50 3.44
Band-pass filter (Φ2) 79.72 63.24 79.68 17.30
High-pass filter (Φ3) 29.51 14.27 29.10 2.04

•BandPass Graph is a binary classification problem
according to frequency that the graph signal carries.

MLP GCN GIN GAT ChebNet
Accuracy 50 77.90 87.60 85.30 98.2
Loss 0.69 0.454 0.273 0.324 0.062

•Mnist-75 is a graph classification problem. It is a
superpixel graph version of MNIST dataset.

MLP GCN GIN GAT CayleyNet ChebNet
Accuracy 25.10 52.98 75.23 82.73 90.31 92.08
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