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ABSTRACT
Gaussian Pyramid (GP) is one of the most important
representations in computer vision. However, the com-
putation of GP is still challenging for real-time appli-
cations. In this paper, we propose a novel approach
by investigating the extended box filters for an efficient
Gaussian approximation. Taking advantages of the cas-
cade configuration, tiny kernels and memory cache, we
develop a fast and suitable algorithm for embedded sys-
tems, typically smartphones. Experiments with Android
NDK show a 5x speed up compared to an optimized
CPU-version of the Gaussian smoothing.

Index Terms— Gaussian pyramid, extended box
filters, computer vision, SIFT.

1. INTRODUCTION

The Scale-Invariant Feature Transform (SIFT) algo-
rithm [1] performs keypoints that are invariant to scale,
rotation and (partially) viewpoint. The good distinctive-
ness of the generated features made the SIFT method a
reference in the computer vision field. It is widely used
for instance for object detection or recognition [2, 3] to
name a few. However, due to its high computation-time,
the SIFT method cannot be used in real-time applica-
tions. Although several computer vision algorithms have
been proposed to reduce the computational time, they
rather favor the speed and sacrifice the quality of the
extracted features.

This paper deals with software speed-up of the SIFT
method while keeping the same quality of the extracted
features. This choice over dedicated hardware, such as
in [4, 5, 6], is motivated by the high popularity and low
cost mobile devices such as smartphones. Huang et al.
show in [4] that the most time-consuming in the SIFT
method is the construction of the Gaussian Pyramid
(GP), as it represents about 80% of the whole processing.

The GP can be viewed as a stack of blurred-images,
where one layer is obtained by filtering the original image

with a Gaussian filter. Several methods exist to speed-up
this step. The fastest approximate the Gaussian smooth-
ing by a convolution with iterative box filters [7] or bi-
nomial filters [8]. The main drawback is that they fail to
approximate Gaussians with an arbitrary standard devi-
ation σ. Recursive filters [9] are more sophisticated as
they allow a very good approximation of Gaussians with
large σ values. However, the approximation is less good
for small values. Therefore, they are not efficient for GP.

In this paper, we revisit the construction of GP in
the light of the recent survey in [10] and recent devel-
opments on the extended box (ebox) filters. Ebox is
an extension of box filters that allows a fractional ra-
dius [11]. They combine simplicity/efficiency, while pro-
viding a much better approximation to Gaussian convo-
lution than iterative box filters. We propose an improve-
ment of ebox, that takes advantage of tiny kernels and
makes the method faster than the original one in [11].
In addition, we propose an efficient “cache-friendly” im-
plementation that reduces significantly the delay caused
by data accessing. For the sake of clarity, we restrict
the presentation to the implementation in CPU-systems;
Extensions to GPU-systems will be considered in future
works.

This paper is organized as follows. We first review the
GP in Section 2. In Section 3, we give a primer of the
extended box method before we present the new method.
More details about the implementation are given in Sec-
tion 3.2. Experiments and results are presented in Sec-
tion 4, followed by a conclusion and future works.

2. SIFT GAUSSIAN PYRAMID

This section briefly reviews the scale-space pyramid gen-
eration in the SIFT method. Details about keypoint de-
tection and descriptor generation are available in [1].

The Gaussian scale-space of an image is formed by
convolution of the original image I(x, y) and Gaussians



functions Gσ of variable standard deviation σ, that is:

(Gσ ∗ I)(x, y) =
∫∫

R2
Gσ(x− u, y − v)I(u, v)dudv, (1)

with
Gσ(x, y) = 1

2πσ2 exp
(
−x

2 + y2

2σ2

)
. (2)

The result of the convolution is a Gaussian-blurred im-
age at scale σ. In practice, the operation has to be dis-
cretized. The kernel Gσ is truncated and normalized to
unity. Its width W is usually chosen as:

W = 2 round(Kσ) + 1. (3)

where round(x) denotes the closest integer to x. In the
SIFT method, the scale σ is discretized according to:

σs,o = σ0 2o+(s/S), (4)

where s is the scale index, o the octave index, S the scale
resolution, and σ0 ∈ R+ the base scale offset. Using
the values proposed in [1], i.e., σ0 = 1.6, S = 3 and
omin = −1 (which means the original image is doubled
in both width and height before processing), the discrete
set of scales can be grouped in octave as:

{1.6δo, 2.02δo, 2.54δo, 3.2δo, 4.03δo, 5.8δo} (5)

with δo = 2o representing the inter-pixel grid for the o-th
octave, for o = −1, 0, 1, 2, . . . .

Looking at (3) and (4), one can see that the size of
the Gaussian kernels grows very fast with o and s, mak-
ing basic processing inefficient. To overcome this limita-
tion, Lowe [1] proposed two tricks: 1) the image that
has blurred twice the initial value of σ is downsampled
by two and used for the next octave, 2) the images in
an octave are obtained by cascade filtering. The whole
process of GP construction is represented in Fig. 1.

The first trick is based on the scale invariance prop-
erty of the Gaussian kernels. The downsampling is done
easily by taking second pixel in each row and column.

The cascade approach exploits the semigroup prop-
erty that allows to decompose the filter Gσ as two
(smaller) filters, i.e.,:

Gσ1 ∗Gσ2 = G√
σ2

1+σ2
2
. (6)

The next image in an octave is obtained by filtering the
previous one with a Gaussian filter parametrized by:

σcascade(i) = σ0
√

22i/S − 22(i−1)/S , i ≥ 1. (7)

For the set (5), this yields to “effective” filter-values:

σcascade ∈ {1.2263, 1.545, 1.9466, 2.4525, 3.09}. (8)

With the typical K = 3 and recommended values for the
SIFT method, the width of Gaussian kernels used in the
cascade approach are successively 9, 11, 13, 15 and 19.

Fig. 1: The SIFT GP construction (σ0 = 1.6, S = 3
and omin = −1). The scales σs,o are achieved by cascade
filtering with σcascade values on the right.

3. PROPOSED METHOD

In this section, we investigate the iterative ebox filters for
fast and accurate Gaussian-smoothing approximation.

Let us first consider the one dimensional (1D) discrete
ebox kernel, EΛ, defined in [11]:

EΛ(k) =


1
Λ if − r ≤ k ≤ r
α
Λ if k ∈ {±(r + 1)}
0 otherwise

(9)

with k ∈ Z, r ∈ N0, 0 ≤ α < 1 and Λ = 2r + 1 + 2α.
Gaussian convolution with standard deviation σ can

be approximated by d-passes of EΛ with [11]:

r =
⌊1

2

√
12σ2

d
+ 1− 1

2

⌋
, (10)

α = (2r + 1)
r(r + 1)− 3σ2

d

6
(
σ2

d − (r + 1)2
) , (11)

where bxc denotes the so-called floor function. In prac-
tice, each pass can be efficiently implemented using a
‘sliding-window’ algorithm. After the first value of a row
has been computed, the convolution ui = (EΛ ∗ f)i at
sample i is given by:

ui = ui−1 + c1(fi+r+1 − fi−r−2) + c2(fi+r − fi−r−1) (12)

where c1 = α/Λ and c2 = (1 − α)/Λ . Thus, the com-
putational complexity is independent from the length of
the ebox. By the well-known separability property, image
filtering can be accomplished using two 1D convolutions,



one in the horizontal and the other in the vertical di-
rection. Eqn. (12) requires only 2 multiplications and 4
additions per sample. Hence, for an image, the method
costs 4d multiplications and 8d additions per pixel.

3.1. Proposed method: Fast ebox

For small values of σ, like those involved in the GP
construction, we propose an implementation faster than
(12). To this end, we introduce the non-normalized coun-
terpart of EΛ, noted here Ẽr(Λ), defined by:

Ẽr(Λ)(k) = ΛEΛ(k) =


1 if − r ≤ k ≤ r
α if k ∈ {±(r + 1)}
0 otherwise

(13)

Its convolution with a signal f , at sample i, gives:

(Ẽr(Λ) ∗ f)i = α(fi−r−1 + fi+r+1) +
r∑

m=−r
fi+m. (14)

Iterating this kernel d-times gives:

Ẽdr(Λ) := (ΛEΛ) ∗ · · · ∗ (ΛEΛ)︸ ︷︷ ︸
d−times

= ΛdEdΛ. (15)

Dividing Ẽdr(Λ) by Λd allows to recover the iterative ebox
EdΛ. Since Λd is constant over the passes, it can be propa-
gated to the very last pass. In 2D, this means we multiply
by 1/Λ2d the result of the last pass at last direction.

Eqn. (14) needs 2(r + 1) additions and 1 multiplica-
tion. Iterating d-times the same filter in horizontal and
vertical directions yields 4(r + 1)d additions and 2d + 1
multiplications (including the normalization that has to
be done at the end) per pixel; See Table 1.

Inner ebox
length Multiplications Additions Memory

access (Read)

r = 0 [Eqn. (14)] 2d+ 1 4d 3

r = 1 [Eqn. (14)] 2d+ 1 8d 5

r ≥ 2 [Eqn. (12)] 4d 8d 5

Table 1: Number of operations per pixel for the pro-
posed fast ebox filtering.

Using (10) and noting that the argument in the floor
function is a strictly increasing function of σ, one can
show that:

r = 0⇔ σ ∈ [0;
√

2d/3[, (16)
and

r = 1⇔ σ ∈ [
√

2d/3;
√

2d[. (17)
These relations can be used to justify the computa-
tional advantage in considering (14) instead of (12) in
the SIFT applications. As an example, for d = 4, the
cases σcascade <

√
8/3 and

√
8/3 ≤ σcascade <

√
8 occur

respectively two times per octave, giving a reduction in
number of operations for 4 filters out of 5 (per octave).

Code 1: Fast Iterative Ebox (r = 0)

1 void ebox conv r0 ( f loat ∗ I , f loat ∗ J , int d ,
2 f loat ∗ tmp , f loat ∗ tmprows , int width ,
3 int height , f loat alpha , f loat c o e f f ) {
4 f loat ∗ r in , ∗ rout ;
5 /∗∗∗∗∗ convo lu t ion along x−d i r e c t i o n ∗∗∗∗∗/
6 for ( int y = 0 ; y < he ight ; ++y ) {
7 int i t e r = d ;
8 r i n = &I [ y∗width ] ; rout = tmprows ;
9 while (−− i t e r > 0) {

10 s c a n l i n e r 0 ( r in , rout , alpha , width −1);
11 r i n = rout ; rout += width ;
12 }
13 s c a n l i n e r 0 ( r in , tmp , alpha , width−1, height , y ) ;
14 }
15 /∗∗∗∗∗ convo lu t ion along y−d i r e c t i o n ∗∗∗∗∗/
16 for ( int y = 0 ; y < width ; ++y ) {
17 int i t e r = d ;
18 r i n = &tmp [ y∗ he ight ] ; rout = tmprows ;
19 while (−− i t e r > 0) {
20 s c a n l i n e r 0 ( r in , rout , alpha , height −1);
21 r i n = rout ; rout += he ight ;
22 }
23 s c a n l i n e r 0 ( r in , J , alpha , height −1,width , y ) ;
24 }
25 for ( int i =0, wh=width∗ he ight ; i < wh ; ++i )
26 J [ i ] ∗ = c o e f f ; // normal i za t ion
27 }
28
29 void s c a n l i n e r 0 ( f loat ∗ in , f loat ∗ out ,
30 f loat w, int xmax) { int x ;
31 out [ 0 ] = in [ 0 ] + w ∗ ( in [ 1 ] + in [ 1 ] ) ;
32 for ( x=1; x < xmax ; ++x )
33 out [ x ] = w ∗ ( in [ x−1] + in [ x+1]) + in [ x ] ;
34 out [ x ] = w ∗ ( in [ x−1] + in [ x−1]) + in [ x ] ;
35 }

3.2. Cache-aware implementation

A “cache-friendly” algorithm generally exploits the prin-
ciple of temporal and spatial locality [12], which states
that data located close together in address-space are also
referenced close together in time.

We propose a cache-friendly algorithm, in the same
spirit as the one in [13] for reconstructing X-ray images.
The C++ implementation (see Code 1) starts with an
horizontal convolution. For the first d − 1 iterations,
it works iteratively (lines 9-12) using the function scan-
line r0 to get advantages of prefetched data in the cache.
This function handles boundaries by symmetry (lines 31
and 34) outside the loop in order not to waste time for
unnecessary checks. The last iteration along x-direction
(line 13) performs the convolution and on-the-fly trans-
position - code not listed here due to lack of space. The
result is stored in a temporary array re-used as input for
the vertical convolution (lines 16-24) based on the same
row-by-row process. The transposed result (line 23) is
stored in J (the proper orientation) and a final normal-
ization is done (lines 25-26).



Fig. 2: MSE for test image 640x480 with omin = −1: a)
box filtering with d = 6, b) Gaussian, the proposed ebox
filtering with c) d = 2, d) d = 3, e) d = 4, f) d = 5.

4. EXPERIMENTS AND RESULTS

In this evaluation, the Gaussian filtering and the pro-
posed fast ebox method were implemented for Android
NDK in C++. The test images were recorded by the An-
droid app on a Samsung Galaxy A5 (Qualcomm Snap-
dragon 410 1.2 GHz) using the camera preview mode.
For one image test from the camera preview, the An-
droid app created the GP from each method and stored
the associated blurred-images.

4.1. Accuracy of the iterative ebox filtering

We first investigated the accuracy of iterative ebox fil-
ters. The blurred-images generated by the Android im-
plementations were compared to a Matlab implementa-
tion, based on the Mean Square Error defined as:

MSE(s) = 1
|L(s)|

∑
x

∑
y

(
L(x, y; s)− L∗(x, y; s)

)2
,

where L∗ is the “reference” blurred-image, L the ap-
proximated image, and |L(s)| the number of pixels at
scale index s. Fig. 2 shows the MSE for one test im-
age. Using `∞ operator norm, curves are similar (not
shown here due to lack of space). In Fig. 2, one can re-
mark that biggest variations are given by iterative box
filters, despite the high number (d = 6) of iterations. The
small difference between Matlab and Android for Gaus-
sian comes from the precision level (double vs floating-
point). Iterative ebox gives a better approximation than
iterative box. For d ≥ 4, there is almost no difference
between iterative ebox and Gaussian filtering.

Box filters introduce noise on edges, known in image
processing as ringing artifacts. To quantify this, we used

Fig. 3: Running-time of the GP construction for QVGA
(320x240) in red (bottom) and VGA (640x480 pixels)
in blue (top), by iterative ebox with different passes d.
‘Box’ stands for the 6-iterative box filters.

the Blur Measure (BM), defined in [14] as :

BM(I) =

∑
(x,y)∈E

√ ∑
(x′,y′)∈Nxy

(I(x, y)− I(x′, y′))2/|Nxy|∑
(x,y)∈E I(x, y) ,

where E is the set of edge pixels, obtained using a Sobel
operator, and Nxy a set of 8-neighborhood of a pixel
I(x, y). Table 2 shows the Normalized Absolute Error
(NAE), |BM(L)−BM(L∗)|/BM(L∗), for the 1st octave.
Higher value of NAE BM-score means there is higher
change in intensity along the edges which in turn means
image has more artifacts. As can be seen, the NAE BM-
score of Fast ebox is lower, which means that ebox is
better than box near the edges.

Scale index 0 1 2 3 4 5
Box (d = 6) 2.31 3.70 0.50 1.90 3.22 1.88
Fast ebox 0.37 0.30 0.36 0.91 0.42 0.47

Table 2: NAE BM-score (%).

4.2. Running-time

Fig. 3 shows the (average) running-time of the GP con-
struction step with our Android implementation; the
dashdot lines represents box filters with d = 6, which
is the recommended value in [15]. As can be seen, the
running time of ebox is piecewise linear in d. This can
be explained by analysis in Section 3. From Fig. 2 and 3,
d = 4 is a good choice, because it is as fast as iterative
box filters while being a very good approximation of the
Gaussian. In Table 3, we compare the running time with
CPU-only implementations of GP reported in [4, 16]. Al-
though our smartphone is not as fast as those used by
the authors, our algorithm is faster in both cases QVGA



and VGA. To get insight the speed up improvement, let’s
get back to a common clock rate by normalization. The
process is based on the well-known CPU performance
equation :

CPU time = Instruction Counts× CPI
Clock Rate , (18)

where CPI represents the Cycles Per Instruction. As-
suming the same program (i.e. no changes in the com-
piler), we can apply a change in the clock rate as follows :

CPU timenew = CPU timeold × Clock Rateold

Clock Ratenew
. (19)

Results for a clock rate of 1 GHz are shown in italic in
Table 3. Comparing the normalized running-times, our
implementation gives a 5x speed up.

Input Time CPU Freq
(ms) (GHz)

Rister et al. QVGA 734 1.5
(see Table 1 on CPU, [16]) 1101 1

Huang et al. VGA 2100 2.09
(see Table 2, [4]) 4389 1

Fast ebox (d = 4)
QVGA 185 1.2

222 1

VGA 754 1.2
905 1

Table 3: Comparison of running times. The values in
italic are obtained by normalization.

5. SUMMARY

In this paper, we proposed fast extended box filters for
Gaussian Pyramid construction. Experiments on a single
CPU and Android NDK showed the efficiency of the pro-
posal, in terms of accuracy and running-time. In ongo-
ing research, we will study parallel implementation of the
proposed methods, based on multi-core CPUs or hard-
ware such as GPUs. We will also study ebox for fast and
accurate approximations of Gaussian second-derivatives,
as they are widely used in signal processing for appli-
cations such as the Laplacian or the Hessian detectors.
Finally, by optimizing the rest of its steps, we will im-
plement the entire SIFT method on an Android device
for a real-time localization application.
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