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Abstract—Many machine learning frameworks, such as
resource-allocating networks, kernel-based methods, Gaussian
processes, and radial-basis-function networks, require a sparsifi-
cation scheme in order to address the online learning paradigm.
For this purpose, several online sparsification criteria have been
proposed to restrict the model definition on a subset of samples.
The most known criterion is the (linear) approximation criterion,
which discards any sample that can be well represented by
the already contributing samples, an operation with excessive
computational complexity. Several computationally efficient spar-
sification criteria have been introduced in the literature with the
distance and the coherence criteria. This paper provides a unified
framework that connects these sparsification criteria in terms of
approximating samples, by establishing theoretical bounds on the
approximation errors. Furthermore, the error of approximating
any pattern is investigated, by proposing upper bounds on the
approximation error for each of the aforementioned sparsification
criteria. Two classes of fundamental patterns are described in
detail, the centroid (i.e., empirical mean) and the principal axes
in the kernel principal component analysis. Experimental results
show the relevance of the theoretical results established in this
paper.

Index Terms—Sparse approximation, adaptive filtering, kernel-
based methods, resource-allocating networks, Gram matrix, ma-
chine learning, pattern recognition, online learning, sparsification
criteria.

I. INTRODUCTION

DATA DELUGE in the era of “Big Data” brings new

opportunities and challenges in the area of machine

learning and signal processing [1], [2], [3]. This paradigm

is often addressed in an online setting, by coupling a spar-

sification scheme with the learning machine under scrutiny.

Indeed, many machine learning frameworks, such as resource-

allocating networks [4], kernel-based methods for classifi-

cation and regression [5], Gaussian processes [6], radial-

basis-function networks [7] and kernel principal component

analysis [8], share essentially the same underlying model,

with as many parameters to be estimated as training samples,

as defined by the “Representer Theorem” [9]. This model

is inappropriate in online learning, where a new sample is

available at each instant. To stay computationally tractable,

one needs to restrict the incrementation in the model com-

plexity, by selecting the subset of samples that contributes

to a reduced-order model as an approximation of the full-

order one. In order to overcome this bottleneck in online

learning, sparsification schemes have been proposed for all

the aforementioned machines.
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An online sparsification scheme operates as follows: at

each instant, it determines if the new sample can be safely

discarded from contributing to the order growth of the model;

otherwise, the sample needs to take part in the order incre-

mentation. The most known online sparsification criteria is

the approximation criterion, also called approximate linear

dependency. It has been widely investigated in the literature,

for Gaussian processes [10], kernel recursive least squares

algorithm [11], kernel least mean square algorithm [12],

and kernel principal component analysis [8]. This criterion

determines the relevance of discarding or accepting the current

sample by comparing, to a predefined threshold, the residual

error of approximating it with a representation (i.e., linear

combination) of samples — or nonlinearly mapped samples

as in kernel methods — already contributing to the model. A

crucial issue in the approximation criterion is its computational

complexity, which scales cubically with the order of the model

under scrutiny.

Several computationally efficient sparsification criteria have

been introduced in the literature, with essentially the same

computational complexity that scales linearly with the model

order. These sparsification criteria rely on the topology of the

samples in order to select the most relevant samples. The most

widely investigated criteria are the distance and the coherence

criteria, as well as several variants such as the Babel criterion.

The distance criterion, introduced by Platt in [4] to control

the complexity of resource-allocating networks in radial-basis-

function networks, retains the most mutually distant samples;

see also [13], [14] for recent advances on the distance criterion.

The coherence criterion, introduced by Honeine, Richard, and

Bermudez in [15], [16] with the recent advances in compressed

sensing [17], [18], retains samples that are mutually least

coherent. As an extension of the coherence criterion, the

Babel criterion uses the cumulative coherence as a measure

of diversity [19].

These sparsification criteria have been separately investi-

gated in the literature. To the best of our knowledge, there is

no work that studies all these sparsification criteria together.

The conducted analyses have been often based on the compu-

tational complexity, as advocated in [16], [20] by criticizing

the computational cost of the approximation criterion in favor

of the other sparsification criteria. In [15], [16], [21], we have

developed with colleagues several theoretical results that al-

lows to compare the coherence to the approximation criterion.

These results have not been extended to other sparsification

criteria, and were demonstrated for the particular case of unit-

norm data. This paper allows to cross-fertilize these results for

several sparsification criteria and extends them to the general

case, beyond unit-norm data.
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TABLE I
A BIRDS EYE VIEW OF THIS PAPER. SOME OF THE RESULTS WERE

PREVIOUSLY STUDIED FOR UNIT-NORM KERNELS, AS SHOWN WITH THE

REFERENCES GIVEN IN THE TABLE (WHERE • DENOTES TRIVIALITY FOR

THE APPROXIMATION CRITERION). IN THIS WORK, WE PROVIDE AN

EXTENSIVE STUDY THAT COMPLETES THE ANALYSIS TO ALL

SPARSIFICATION CRITERIA, OFTEN WITH SHARPER BOUNDS (SHOWN IN

GRAY COLOR), AND WE ESTABLISH NEW THEORETICAL RESULTS.
MOREOVER, WE GENERALIZE THESE RESULTS TO ANY TYPE OF ATOMS,

BEYOND UNIT-NORM ATOMS.
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Section

Reference: most known work [4] [10] [16]

Reference: more recent work [20] [8] [25]

Approximation of any sample X • X IV

�

Error on discarded samples X • [15] IV-A

�

Error on any atom X • [16] IV-B

Approximation of any pattern X X X V

�

Error on the centroid X X [21] V-A

�

Error on the principal axes [11] [15] V-B

This paper presents a unified framework in order to bridge

the gap between online sparsification criteria, as follows. On

one hand, we show that most known online sparsification

criteria behave essentially in an identical mechanism as the

approximation criterion. To this end, we provide upper bounds

on the error of approximating, with the dictionary elements,

any sample discarded by the sparsification criterion; secondly,

we provide lower bounds on the error of approximating

retained samples. On the other hand, we examine the relevance

of approximating any full-order pattern with a sparse model

obtained with any of the aforementioned sparsification criteria,

including the approximation criterion. Within the proposed

framework, we provide upper bounds on the error of ap-

proximating any pattern in the general case. Furthermore, we

explore in detail two particular patterns, the centroid (i.e.,

empirical mean, as studied for instance in [22], [23]) and

the principal axes in the kernel principal component analysis

(kernel-PCA, [24]).

The core contribution of this paper is to provide a unified

presentation of kernel-related sparsification criteria, with the

derivation of bounds for the approximation errors for samples

and patterns, as described respectively in Sections IV and V;

see Table I for an overview. The remainder of this paper

is organized as follows. Next section introduces the kernel-

based machines for online learning and presents the key issues

studied in this work. Section III presents the aforementioned

computationally efficient sparsification criteria. Section IV

investigates bounds on the error of approximating samples,

either discarded or accepted by any sparsification criterion.

These results are extended in Section V to the problem of

approximating any pattern. Experimental results are conducted

in Section VI, illustrating the relevance of the obtained results.

Section VII concludes this document with discussions and

future works.

II. KERNEL-BASED MACHINES FOR ONLINE LEARNING

In this section, we introduce the kernel-based machines for

online learning, by presenting the approximation criterion with

the key issues studied in this paper.

A. Machine learning and online learning

Machine learning seeks a pattern ψ(·) connecting an input

space X ⊂ R
d to an output space Y ⊂ R, by using a set

of training samples, denoted {(x1, y1), (x2, y2), . . . , (xn, yn)}
with (xk, yk) ∈ X × Y. Considering a loss function C(·, ·)
defined on Y×Y that measures the error between the desired

output and the estimated one with ψ(·), one seeks to minimize

a regularized empirical risk of the form

argmin
ψ(·)∈H

n
∑

i=1

C(ψ(xi), yi) + ηR(‖ψ(·)‖2
H
), (1)

where H is the hypothesis space of candidate solutions and

η is a parameter that controls the tradeoff between the fitness

error (first term) and the regularity of the solution (second

term) with R(·) being a monotonically increasing function.

Examples of loss functions are the quadratic loss |ψ(xi)−yi|2,

the hinge loss (1 − ψ(xi)yi)+ of the SVM [5], the logistic

loss log(1+exp(−ψ(xi)yi)), as well as the unsupervised loss

function −|ψ(xi)|2 which is related to the PCA.

Let κ : X × X → R be a positive definite kernel,

and (H, 〈·, ·〉H) the induced reproducing kernel Hilbert space

(RKHS) with its inner product. The reproducing property

states that any function ψ(·) of H can be evaluated at any sam-

ple xi of X using ψ(xi) = 〈ψ(·), κ(·,xi)〉H. This property

shows that any sample xi of X is represented with κ(·,xi)
in H. Moreover, the reproducing property leads to the so-

called kernel trick, that is for any pair of samples (xi,xj),
we have 〈κ(·,xi), κ(·,xj)〉H = κ(xi,xj) and ‖κ(·,xi)‖H =
κ(xi,xi). The most used kernels and their expressions are:

Kernel κ(xi,xj)

Linear 〈xi,xj〉
Polynomial (〈xi,xj〉+ c)

p

Exponential exp (〈xi,xj〉)
Gaussian exp

(

−1
2σ2 ‖xi − xj‖2

)

Among these kernels, only the Gaussian kernel is unit-norm,

that is ‖κ(x, ·)‖H = 1 for all x. Other kernels can be unit-

norm on some restricted X, such as the linear kernel for unit-

norm samples. In this paper, we do not restrict ourselves to

any particular kernel or space X. We denote

r2 = inf
x∈X

κ(x,x) and R2 = sup
x∈X

κ(x,x).

For unit-norm kernels, we get R = r = 1.

The Representer Theorem provides an essential result in

kernel-based machines. It states that the solution of the opti-

mization problem (1) takes the form

ψ(·) =
n
∑

i=1

αi κ(xi, ·). (2)

This theorem, proven in [9], shows that the optimal solution

has as many parameters αi to be estimated as the number of
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available samples (xi, yi). This result constitutes the principal

bottleneck for online learning. Indeed, in an online setting, the

solution should be adapted based on a new sample available at

each instant, namely (xt, yt) at instant t. Thus, by including

the new pair (xt, yt) in the training set, the corresponding

parameter αt is added to the set of parameters to be estimated,

by following the Representer Theorem. As a consequence, the

order of the model (2) is continuously increasing.

To overcome this bottleneck, one needs to control the

growth of the model order at each instant, by keeping only

a fraction of the kernel functions in the expansion (2). The

reduced-order model takes the form

ψ(·) =
m
∑

j=1

αj κ(x̀j , ·) (3)

with m≪ t, predefined or dependent on t. In this expression,

{x̀1, x̀2, . . . , x̀m} is a subset of {x1,x2, . . . ,xt}, as often

considered in the literature1. We denote by dictionary the

set D = {κ(x̀1, ·), κ(x̀2, ·), . . . , κ(x̀m, ·)}, and by atoms its

elements. Throughout this paper, all quantities associated to

the dictionary have an accent (by analogy to phonetics, where

stress accents are associated to prominence). This is the case

for instance of the m-by-m Gram matrix K̀ whose (i, j)-th
entry is κ(x̀i, x̀j). The eigenvalues of this matrix are denoted

λ̀1, λ̀2, . . . , λ̀m, given in non-increasing order.

The optimization problem is two-fold at each

instant: selecting the proper dictionary D =
{κ(x̀1, ·), κ(x̀2, ·), . . . , κ(x̀m, ·)} and estimating the

corresponding parameters α1, α2, . . . , αm. New challenges

arise in an online learning setting. Determining the optimal

dictionary at each instant is a combinatorial optimization

problem, when optimality is measured by comparing the

reduced-order solution (3) to its full-order form (2). The

recursive update provides an elegant way to overcome this

computationally intractable problem, by determining if the

new kernel function κ(xt, ·) needs to be included to the

dictionary; otherwise, it can be discarded since it is efficiently

approximated with atoms already belonging to the dictionary.

This is the essence of the approximation criterion.

B. Approximation criterion

The (linear) approximation criterion was initially proposed

in [29] for classification and regression, and in [30] for

Gaussian processes. In online learning with kernels, as studied

for system identification in [11] and more recently for kernel

principal component analysis in [8], it operates as follows: the

current sample is discarded (not included in the dictionary),

if it can be sufficiently represented by a linear combination

of atoms already belonging to the dictionary; otherwise, it

1One may also relax the constraint that dictionary elements must be a
subset of the set of available samples {x1,x2, . . . ,xt}. This general case
can also be considered within the framework proposed in this paper, as long
as the investigated dictionary is quantified using any of the diversity/sparsity
measures, such as the coherence, the approximation or the distance measures
[26]. For instance in [27], [28], the dictionary elements are updated with a
constrained stochastic gradient algorithm in order to minimize the prediction
error subject to a bounded coherence measure.

is included in the dictionary. Formally, the kernel function

κ(xt, ·) is included in the dictionary if

min
ξ1···ξm

∥

∥

∥
κ(xt, ·)−

m
∑

j=1

ξj κ(x̀j , ·)
∥

∥

∥

2

H

≥ δ2, (4)

where δ is a positive threshold parameter that controls the level

of sparsity. The above norm is the residual error obtained by

projecting κ(xt, ·) onto the space spanned by the dictionary.

The optimal value of each coefficient ξj is obtained by

nullifying the derivative of the above cost function with respect

to it, which leads to ξ = K̀
−1

κ̀(x̀t), where κ̀(xt) is the

column vector of entries κ(x̀j ,xt), for j = 1, 2, . . . ,m.

By inserting this expression into expression (4), we get the

following condition of accepting the current kernel function:

κ(xt,xt)− κ̀(xt)
⊤K̀

−1
κ̀(xt) ≥ δ2. (5)

The resulting dictionary, called δ-approximate, satisfies the

relation

min
i=1···m

min
ξ1···ξm

∥

∥

∥
κ(x̀i, ·)−

m
∑

j=1

j 6=i

ξj κ(x̀j , ·)
∥

∥

∥

H

≥ δ.

One could also include a removal process, in the same spirit

as the fixed-budget concept, by discarding the atom that can

be well approximated with the other atoms, as investigated

for instance in [31]. Nonetheless, the dictionary is still δ-

approximate. The use of a removal process does not affect

the results given in this paper.

C. Issues studied in this paper

In the following, we describe several issues that motivate

(and structure) this work, illustrated here with respect to the

approximation criterion.

Computational complexity

The approximation criterion requires the inversion of the

Gram matrix associated to the dictionary, which is the most

computationally expensive process. Its computational com-

plexity scales cubically with the size of the dictionary, i.e.,

O(m3) operations, and can be reduced to O(m2) by using

a recursive rule when a single element is included in the

dictionary. Moreover, the evaluation of the condition expressed

in (5) requires two matrix multiplications at each instant. These

computational costs counteract the benefits of several online

learning techniques, such as gradient-based and least-mean-

square algorithms (e.g., LMS, NLMS, affine projection, ...).

To reduce the computational burden of the approximation

criterion, several computationally efficient sparsification crite-

ria have been proposed in the literature, sharing essentially the

same computational complexity that scales linearly with the

size of the dictionary, i.e., O(m) operations at each instant.

The most known criteria are the distance and the coherence

criteria; see Section III for a description.
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Approximation error of any sample

The approximation criterion relies on establishing a dictio-

nary such that the error of approximating each of its atoms,

with a linear combination of the other atoms, cannot be

smaller than the given threshold δ. Moreover, the decision

of discarding any sample from the dictionary is defined by

the same process, namely when its approximation error, with

a linear combination of the other atoms, is smaller than the

same threshold δ. While the approximation criterion possesses

such duality between accepting and discarding samples at the

very same value of thresholding the approximation error, this

is not the case of the other sparsification criteria.

In Section IV, we bridge the gap between the approximation

criterion and the other online sparsification criteria. For this

purpose, on one hand, we establish in Section IV-A upper

bounds on the error of approximating a discarded sample with

atoms of a dictionary obtained by the distance or the coherence

criterion. One the other hand, we provide in Section IV-B

lower bounds on the error of approximating any atom with

the other atoms of the dictionary under scrutiny.

From approximating samples to approximating patterns

All the aforementioned sparsification criteria operate in a

pre-processing scheme, by selecting samples independently

of the resulting sparse approximation of the full-order pat-

tern. In other words, the selection of the relevant subset

{x̀1, x̀2, . . . , x̀m} from the set {x1,x2, . . . ,xt} is only based

on the topology of the samples; it is independent of the power

of the dictionary to approximate accurately any pattern of the

form (2) with the reduced-order model (3).

In Section V, we study the relevance of approximating any

pattern with a dictionary obtained by any online sparsification

criterion, including the approximation criterion. We establish

upper bounds on the approximation error of any pattern, before

examining in detail two particular classes of patterns, the

centroid as studied in Section V-A and the most relevant

principal axes in kernel-PCA investigated in Section V-B.

III. ONLINE SPARSIFICATION CRITERIA

With a novel sample xt available at instant t, a sparsifi-

cation rule determines if κ(xt, ·) should be included in the

dictionary, by incrementing the model order m and setting

x̀m+1 = xt. The sparsification criteria measure the relevance

of such complexity-incrementation by comparing the current

kernel function κ(xt, ·) with the atoms of the dictionary. They

are defined by either a dissimilarity measure, i.e., constructing

the dictionary with the most mutually distant atoms, or a

similarity measure, i.e., constructing the dictionary with the

least coherent or correlated atoms. To this end, a threshold

is used to control the level of sparsity of the dictionary. The

most investigated criteria are outlined in the following.

A. Distance criterion

It is natural to propose a sparsification criterion that con-

structs a dictionary with large distances between its entries,

thus discarding samples that are too close to any of the

atoms already belonging to the dictionary. The current kernel

function κ(xt, ·) is included in the dictionary if

min
j=1···m

min
ξ

‖κ(xt, ·)− ξ κ(x̀j , ·)‖H ≥ δ, (6)

for a predefined positive threshold δ; otherwise, it can be

efficiently approximated, up to a multiplicative constant, with

an atom of the dictionary. It is easy to see that the optimal

value of the scaling factor ξ is κ(xt, x̀j)/κ(x̀j , x̀j), since

the left-hand-side of (6) is the residual error on projecting

κ(xt, ·) onto κ(x̀j , ·) (in the same spirit as the approximation

criterion). This allows to simplify the condition (6) to get

min
j=1···m

(

κ(xt,xt)−
κ(xt, x̀j)

2

κ(x̀j , x̀j)

)

≥ δ2. (7)

The resulting dictionary, called δ-distant, satisfies for any pair

(x̀i, x̀j):

κ(x̀i, x̀i)−
κ(x̀i, x̀j)

2

κ(x̀j , x̀j)
≥ δ2. (8)

For unit-norm atoms, this expression reduces to the condition

|κ(x̀i, x̀j)| ≤
√
1− δ2. This sparsification criterion has been

extensively used in the literature under different names, such as

the novelty criterion proposed in [4] (where the scaling factor

was dropped and a prediction error mechanism was included in

a second stage; see also [32], [7]) and the quantized criterion

described in [33].

B. Coherence criterion

The coherence measure has been extensively studied in the

literature of compressed sensing in the particular case of the

linear kernel with unit-norm samples [17], [18]. In the more

general case with the kernel formalism, a dictionary is γ-

coherent if

max
i,j=1···m

i6=j

|κ(x̀i, x̀j)|
√

κ(x̀i, x̀i)κ(x̀j , x̀j)
≤ γ, (9)

which corresponds to the largest value of the cosine angle

between any pair of atoms, since the above objective function

can be written as

|〈κ(x̀i, ·), κ(x̀j , ·)〉H|
‖κ(x̀i, ·)‖H‖κ(x̀j , ·)‖H

.

The coherence criterion, introduced in [15], [16] and studied

more recently in [34], [35], constructs a dictionary with atoms

that are mutually least coherent, by restricting this measure

below some predefined value γ ∈ [0 ; 1], where the null value

yields an orthogonal basis. This criterion includes the current

kernel function κ(xt, ·) in the dictionary if

max
j=1···m

|κ(xt, x̀j)|
√

κ(xt,xt)κ(x̀j , x̀j)
≤ γ. (10)

It is worth noting that the denominator in each of the above

expressions reduces to 1 when dealing with unit-norm atoms,

thus expression (10) becomes

max
j=1···m

|κ(xt, x̀j)| ≤ γ.

In this case, it turns out that this criterion is equivalent to the

distance criterion with the threshold set to δ =
√

1− γ2.
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IV. APPROXIMATION ERROR OF ANY SAMPLE

In this section, we study the elementary issue of approximat-

ing a sample by the span of a dictionary. To this end, this issue

is considered in its two folds: the error of approximating a

discarded sample, and the error of approximating any accepted

sample, namely approximating any atom of the dictionary with

all the other atoms. We provide upper bounds on the former

and lower bounds on the latter, for each of the sparsification

criteria studied in previous section. It is worth noting that only

the approximation criterion relies on a duality of discarding

and accepting samples at the very same value in thresholding

the approximation error.

Let P̀ be the projection operator onto the subspace spanned

by the atoms κ(x̀1, ·), . . . , κ(x̀m, ·) of a dictionary resulting

from a sparsification criterion. Thus, for any sample x, the

projection of the kernel function κ(x, ·) onto this subspace

is given by P̀κ(x, ·). The norm of P̀κ(x, ·) is obtained by

the maximum inner product 〈κ(x, ·), ϕ(·)〉H over all the unit-

norm functions ϕ(·) of that subspace. By writing ϕ(·) =
∑m

j=1 βjκ(x̀j , ·)/‖
∑m

j=1 βjκ(x̀j , ·)‖H, one gets

‖P̀κ(x, ·)‖H = max
β

〈∑m

j=1 βjκ(x̀j , ·), κ(x, ·)〉H
‖∑m

j=1 βjκ(x̀j , ·)‖H

= max
β

∑m

j=1 βjκ(x, x̀j)

‖∑m

j=1 βjκ(x̀j , ·)‖H
. (11)

Moreover, the Pythagorean Theorem allows to write

‖(I− P̀)κ(x, ·)‖2
H

= κ(x,x) − ‖P̀κ(x, ·)‖2
H

, where I is the

identity operator. Thus, the quadratic approximation error is

‖(I− P̀)κ(x, ·)‖2
H
= κ(x,x)−max

β

(
∑m

j=1 βjκ(x, x̀j)
)2

‖∑m

j=1 βjκ(x̀j , ·)‖2H
.

(12)

Next, we shall investigate this expression to establish bounds

on approximating either discarded samples or included ones.

A. Approximation error of discarded samples

When the sample xt is discarded, we propose to upper

bound the quadratic approximation error (12) with

‖(I− P̀)κ(xt, ·)‖2H ≤ κ(xt,xt)−max
j

κ(xt, x̀j)
2

κ(x̀j , x̀j)
, (13)

where the inequality corresponds to the special choice of the

coefficients, with β1 = . . . = βm = 0 except for βj = ±1.

Next, we show that the above quotient is lower-bounded, by

examining separately the distance and the coherence criteria.

Theorem 1 (Discarding error for the distance criterion):

Let xt be a sample not satisfying the distance condition

(7) for some given threshold δ. The quadratic error of

approximating κ(xt, ·) with a linear combination of atoms

from the resulting dictionary cannot exceed δ2.

Proof: The proof is straightforward, since we have

κ(xt,xt)− max
j=1...m

κ(xt, x̀j)
2

κ(x̀j , x̀j)
= min
j=1...m

κ(xt,xt)−
κ(xt, x̀j)

2

κ(x̀j , x̀j)
,

which is upper-bounded by δ2 for any xt that does not satisfy

the condition (6)-(7). As a consequence, the right-hand-side

of inequality (13) is also upper-bounded by δ2.

Theorem 2 (Discarding error for the coherence criterion):

Let xt be a sample not satisfying the coherence (10) for some

threshold γ. The quadratic error of approximating κ(xt, ·)
with a linear combination of the dictionary atoms cannot

exceed κ(xt,xt)(1− γ2), and R2(1 − γ2) for all samples.

Proof: The unfulfilled coherence condition (10) can be

written in the equivalent form

max
j=1···m

|κ(xt, x̀j)|
√

κ(x̀j , x̀j)
> γ

√

κ(xt,xt).

By inserting this inequality into (13), we get

‖(I− P̀)κ(xt, ·)‖2H < κ(xt,xt)− γ2 κ(xt,xt).

B. Approximation error of an atom from the dictionary

Next, we study the approximation error of an atom of a

dictionary with a linear combination of its other atoms.

Consider projecting an atom κ(x̀i, ·) of the dictionary onto

the span of the other m − 1 atoms. By following the same

derivations as in the beginning of Section IV, we have

‖(I− P̀)κ(x̀i, ·)‖2H=κ(x̀i, x̀i)−max
β
\{i}

(
∑m
j=1,j 6=i βjκ(x̀i, x̀j)

)2

‖
∑m

j=1,j 6=i βjκ(x̀j , ·)‖2H
.

On one hand, the numerator in the above expression is upper-

bounded, since we have from the Cauchy-Schwarz inequality:

(

m
∑

j=1

j 6=i

βjκ(x̀i, x̀j)

)2

≤
m
∑

j=1

j 6=i

β2
j

m
∑

j=1

j 6=i

|κ(x̀i, x̀j)|2 .

On the other hand, the denominator has a lower bound, since

∥

∥

∥

m
∑

j=1

j 6=i

βjκ(x̀j , ·)
∥

∥

∥

2

H

= β⊤

\{i}
K̀

\{i}
β

\{i}
≥ λ̀

\{i}m−1‖β\{i}
‖2,

where K̀
\{i}

is the (m−1)-by-(m−1) submatrix of the matrix

K̀ obtained by removing its i-th row and its i-th column,

i.e., the entries associated to x̀i, and λ̀
\{i}m−1 is its smallest

eigenvalue. By combining these two inequalities, we get

‖(I− P̀)κ(x̀i, ·)‖2H ≥ κ(x̀i, x̀i)−
1

λ̀
\{i}m−1

m
∑

j=1

j 6=i

|κ(x̀i, x̀j)|2.

(14)

For each sparsification criterion, we shall write this lower

bound by using the corresponding summation expression and

the appropriate lower bound on the eigenvalues, as obtained

in [26, Section IV] and summarized in the appendix.

Theorem 3 (Acceptance error for the distance criterion):

For a δ-distant dictionary, the quadratic error of approximating

any atom κ(x̀i, ·) with a linear combination of the other

atoms is lower-bounded by

κ(x̀i, x̀i)−
(

κ(x̀i, x̀i)− δ2
)

(m− 1)R2

r2 − (m− 2)R
√
R2 − δ2

.

For unit-norm atoms, we get a lower bound for all atoms.
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Proof: The proof is split in two parts, by investigating

expression (14). Firstly, the summation term is upper-bounded

since, from (8), we have that any pair (x̀i, x̀j) satisfies

m
∑

j=1

j 6=i

|κ(x̀i, x̀j)|2 ≤
m
∑

j=1

j 6=i

κ(x̀j , x̀j)
(

κ(x̀i, x̀i)− δ2
)

=
(

κ(x̀i, x̀i)− δ2
)

m
∑

j=1

j 6=i

κ(x̀j , x̀j)

=
(

κ(x̀i, x̀i)− δ2
)

(m− 1) max
j=1···m

j 6=i

κ(x̀j , x̀j)

=
(

κ(x̀i, x̀i)− δ2
)

(m− 1)R2.

Secondly, the eigenvalue in this expression is lower-bounded

by r2−(m−2)R
√
R2 − δ2 for a δ-distant dictionary of m−1

atoms, as shown in Lemma A.1 of the Appendix.

Theorem 4 (Acceptance error for the coherence criterion):

For a γ-coherent dictionary, the quadratic error of

approximating any atom κ(x̀i, ·) with a linear combination

of the other atoms is lower-bounded by

κ(x̀i, x̀i)−
(m− 1) γ2R2κ(x̀i, x̀i)

r2 − (m− 2)γR2
.

For unit-norm atoms, this bounds is independent of x̀i.

Proof: Following the same steps as in the previous proof,

m
∑

j=1

j 6=i

|κ(x̀i, x̀j)|2 ≤ (m− 1) max
j=1···m

j 6=i

|κ(x̀i, x̀j)|2

≤ (m− 1) γ2 max
j=1···m

j 6=i

κ(x̀i, x̀i)κ(x̀j , x̀j)

≤ (m− 1) γ2R2κ(x̀i, x̀i),

where the second inequality follows from the coherence con-

dition. On the other hand, we use the lower bound r2 − (m−
2)γR2 on the eigenvalues associated to a γ-coherent dictionary

of m− 1 atoms, as given in Lemma A.2 of the Appendix.

C. Analyzing the tightness of the obtained bounds

In this section, we study the relevance of these theorems in

terms of tightness of the resulting bounds.

C.1 Revisiting the proofs given in Section IV-A

The theorems given in Section IV-A rely on (13), which is

obtained from (12) as a special choice of the coefficient vector

β. It turns out that this choice provides relevant bounds that

can be obtained using proofs independent of this choice, as

demonstrated in the following alternative proof of Theorem 1:

Another proof of Theorem 1: The approximation error

under scrutiny is upper-bounded as follows:

min
ξ1···ξm

∥

∥κ(xt, ·)−
m
∑

i=1

ξi κ(x̀i, ·)
∥

∥

H

≤ min
j=1···m

min
ξj

∥

∥κ(xt, ·)− ξj κ(x̀j , ·)
∥

∥

H

< δ,

where the last inequality is due to the violation of (6).

C.2 Revisiting Section IV-A with the Geršgorin Discs Theorem

Section IV-A studies the error of approximating discarded

samples. Next, we show that other bounds (but not as sharp)

can be obtained by using the Geršgorin Discs Theorem, by

following the same steps as in Section IV-B. To this end, we

write the quadratic approximation error as in Section II-B with

κ(xt,xt)−κ̀(xt)
⊤K̀

−1
κ̀(xt). If λ̀1 denotes the largest eigen-

value of K̀ , then 1/λ̀1 corresponds to the smallest eigenvalue

of K̀
−1

. Therefore, ‖κ̀(xt)‖2/λ̀1 ≤ κ̀(xt)
⊤K̀

−1
κ̀(xt), and

κ(xt,xt)− κ̀(xt)
⊤K̀

−1
κ̀(xt) ≤ κ(xt,xt)−

‖κ̀(xt)‖2
λ̀1

.

In the following, we consider the case of the coherence crite-

rion with a unit-norm kernel, while extensions to the general

case is straightforward. When dealing with the coherence

criterion, we have ‖κ̀(xt)‖2 ≥ γ2 and λ̀1 ≤ 1 + (m− 1)γ as

given in Lemma A.2. By combining these results, we get

κ(xt,xt)− κ̀(xt)
⊤K̀

−1
κ̀(xt) ≤ 1− γ2

1 + (m− 1)γ
.

It is easy to see that this upper bound is not as tight as the

one obtained in Theorem 2 with 1 − γ2. We also get similar

results for the distance criterion, with the upper bound

1− 1− δ2

1 + (m− 1)
√
1− δ2

,

which is looser than the one given in Theorem 1.

These results demonstrate once again the relevance of the

theorems given in Section IV-A.

C.3 Relevance of the bounds given in Section IV-B

Results given in Section IV-B rely on relation (14), and as a

consequence on lower-bounding the eigenvalues of the Gram

matrix. For this purpose, the well-known Geršgorin Discs

Theorem [36, Chapter 6] is investigated (see the Appendix).

Unfortunately, the Geršgorin Discs Theorem may provide

negative lower bounds, which yields meaningless results since

the Gram matrix is positive definite. However, we can provide

a natural condition to overcome this drawback, by imposing

positive denominators in Theorems 3 and 4. Consider for

instance Theorem 4, then condition r2 − (m − 2)γR2 > 0
yields m < 2−r2/(γR2). It is worth noting that this sufficient

condition is less restrictive than the sufficient condition to

have a dictionary of linear independent atoms as given in [26,

Theorem 7], which is m < 1− r2/(γR2). As a consequence,

when one uses the latter to impose the linear independency

condition, the bounds given in Theorems 3 and 4 are relevant.

C.4 On providing sharper bounds

The bounds obtained in Sections IV-A and IV-B are sharp

as shown in Section VI with experimental results. The quality

of the bounds given in Section IV-B depends on lower-

bounding the eigenvalues. While we have used the well-known

Geršgorin Discs Theorem for this purpose, one can easily

substitute it with any novel bound in the literature, such as the

positive lower bounds obtained for positive definite matrices

in [37], [38], [39]. See also [40], [41], [42] for recent results.

This active research activity is beyond the scope of this paper.
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V. APPROXIMATION OF ANY PATTERN

In this section, we study the relevance of approximating any

pattern with its projection onto the subspace spanned by the

atoms of a dictionary. An upper bound on the approximation

error is derived in the following theorem for any sparsification

criterion, while specific bounds in term of the threshold of

each criterion are given in the following Theorem 6. Moreover,

these results are explored in two particular kernel-based learn-

ing algorithms, with the centroid (see Section V-A) and the

principal axes (see Section V-B) as patterns to be estimated.

Theorem 5: Consider the approximation of any ψ(·) =
∑n

i=1 αi κ(xi, ·) with its projection onto the subspace spanned

by the m atoms of a given dictionary. The quadratic error of

such approximation is upper-bounded by

(n−m) ‖α‖2 ǫ2,

where ǫ is an upper bound on the approximation of any κ(xi, ·)
with a linear combination of atoms from the dictionary.

Proof: The approximation error is upper-bounded, with

‖(I− P̀)ψ(·)‖H = ‖
n
∑

i=1

αi (I− P̀)κ(xi, ·)‖H

≤
n
∑

i=1

|αi| ‖(I− P̀)κ(xi, ·)‖H, (15)

where the inequality is due to the generalized triangular

inequality. By applying the Cauchy-Schwarz inequality, we

get the quadratic approximation error

‖(I− P̀)ψ(·)‖2
H
≤

n
∑

i=1

α2
i

n
∑

i=1

‖(I− P̀)κ(xi, ·)‖2H. (16)

The first summation is the quadratic ℓ2-norm of the vector

of coefficients, namely ‖α‖2. For the second summation, we

separate it in two terms, entries belonging to the dictionary

and those discarded thanks to the used sparsification criterion.

While the former do not contribute to the error, only the

latter take part in the summation, namely the n−m discarded

samples where m is the size of the dictionary. Let ǫ2 be an

upper bound on the quadratic error of discarding samples,

as given in Section IV-A. Then, we get ‖(I− P̀)ψ(·)‖2
H

≤
(n−m) ‖α‖2 ǫ2, which concludes the proof.

By revisiting the upper bounds given in Section IV-A, the

proof of the following theorem is straightforward.

Theorem 6: The upper bound given in Theorem 5 can be

specified for each sparsification criterion, as follows:

• (n−m)‖α‖2δ2 for the δ-distant criterion.

• (n−m)‖α‖2δ2 for the δ-approximate criterion.

• (n−m)‖α‖2R2(1− γ2) for the γ-coherent criterion.

We shall explore next these results for two specific learning

algorithms, in order to clarify the relevance of these bounds.

A. Approximation of the centroid

The centroid (i.e., empirical mean) is a fundamental pattern

of the set of sample, and its use is essential in many statistical

methods such as in [23] for visualization and clustering and

in [22], [43] for one-class classification. In the following,

we study the relevance of approximating the centroid by its

projection onto the subspace spanned by the dictionary atoms.

Let ψ(·) = 1
n

∑n

i=1 κ(xi, ·) be the centroid, namely αi = 1/n
for all i. From Theorem 5, we get

‖(I− P̀)ψ(·)‖2
H
≤
(

1− m

n

)

ǫ2, (17)

where maxi ‖(I− P̀)κ(xi, ·)‖H ≤ ǫ.
It turns out that we can give a sharper bound by relaxing

the Cauchy-Schwarz inequality used in (16), since that the αi
are constant. As a result, we get by revisiting expression (15):

‖(I− P̀)ψ(·)‖H ≤
n
∑

i=1

|αi|‖(I− P̀)κ(xi, ·)‖H

=
1

n

n
∑

i=1

‖(I− P̀)κ(xi, ·)‖H

≤ 1

n
(n−m) ǫ,

where we have followed the same decomposition as in the

proof of Theorem 5, with only the n−m discarded samples

contribute to the summation term. Therefore, the quadratic

approximation error is upper-bounded as follows:

‖(I− P̀)ψ(·)‖2
H
≤
(

1− m

n

)2

ǫ2.

This bound is sharper than the one in (17) since 1− m
n
< 1.

By revisiting Theorem 6 in the light of this result, the upper

bound on the quadratic approximation error is given in terms

of the threshold of each sparsification criterion, as follows:

•

(

1− m

n

)2

δ2 for the δ-distant criterion.

•

(

1− m

n

)2

δ2 for the δ-approximate criterion.

•

(

1− m

n

)2

R2(1− γ2) for the γ-coherent criterion.

These results generalize the work in [21], where only the case

of the coherence criterion was studied for unit-norm atoms.

B. Approximation of the most relevant principal axes

Any sparsification criterion can be seen as a dimensionality

reduction technique, because it identifies a subspace by se-

lecting relevant samples from the available ones. Since it is

an unsupervised approach, it is natural to connect it with PCA.

PCA seeks the principal axes that capture most of the

data2 variance. These axes correspond to the eigenvectors

associated to the largest eigenvalues (called principal values)

of the covariance matrix. In its kernel-PCA formulation, the

k-th principal axis takes the form ψk(·) =
∑n

i=1 αi,k κ(xi, ·),
where the αi,k are the entries of the eigenvector associated to

the k-th eigenvalue λk of the Gram matrix K . Moreover, to

get unit-norm principal axes, these coefficients are normalized

such that
∑n

i=1 α
2
i,k = 1/nλk.

Theorem 7: Consider the principal axis associated to the

eigenvalue λk of the corresponding Gram matrix. The

quadratic error of approximating it by its projection onto the

span of a dictionary of m atoms cannot exceed
(

1− m
n

)

ǫ2

λk
,

2Data are assumed centered; otherwise, use the connections given in [44].
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Fig. 2. Illustration of the bounds (+) on the error of approximating any sample (·). Left figure deals with the error of discarding samples as given in
Theorem 2 for several values of the coherence threshold γ, while right figure illustrates the lower bounds on the error of approximating any atom with the
other atoms of the dictionary, as given in Theorem 4, when γ = 0.35 and the dictionary size m is increasing.
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Fig. 1. The Mackey-Glass data, as a time series with (t, x(t)) (left figure)
and as a time delay embedding (x(t − 10), x(t)) (right figure).

where ǫ is an upper bound on the approximation of any κ(xi, ·)
with a linear combination of atoms from the dictionary.

The proof is due to Theorem 5, since ‖α‖2 = 1/nλk.

Theorem 7 shows that, under the only condition that the used

dictionary has an upper bound on the error of approximating

each kernel function, the principal axes associated to the

largest principal values have the smallest approximation errors.

One can therefore say that the most relevant principal axes lie,

with a small error, in the span of the dictionary.

Moreover, we establish expressions for each sparsification

criterion, as given next in terms of the used threshold:

•

(

1− m

n

) δ2

λk
for the δ-distant criterion.

•

(

1− m

n

) δ2

λk
for the δ-approximate criterion.

•

(

1− m

n

)

R2 1− γ2

λk
for the γ-coherent criterion.

These results generalize previous work on the approximation

and the coherence criteria given for unit-norm atoms, and

provide sharper bounds than the ones previously known in

the literature. Indeed, the upper bound δ2/λk was obtained

for the approximation criterion in [11, Theorem 3.3] and in

[8, Theorem 5], while the coherence criterion was studied in

[15, Proposition 5] with the upper bound (1− γ2)/λk.

VI. EXPERIMENTAL RESULTS

To illustrate the results obtained in this paper, we use the

Mackey-Glass time-delay differential equation

dx

dt
=

0.2x(t− τ)

1 + x10(t− τ)
− 0.1x(t),

with τ = 17 the initial condition x(0) = 1.2 and x(t) = 0
for t < 0. The fourth-order Runge-Kutta method is used to

get the corresponding time series at integer time points3, for

t = 1, 2, . . . , 1200. It is well-known that this time series has

a chaotic behavior, as shown in Fig. 1. The two-dimensional

samples xt = [xt−10 xt]
⊤ are used as input data.

First, we illustrate the relevance of the results given in

Section IV for the Gaussian kernel with the bandwidth set to

σ = 0.35 and the coherence criterion. Fig. 2 (left) illustrates

the error of discarded samples and the upper bound given

in Theorem 2, namely κ(xt,xt)(1 − γ2), for several values

of the coherence threshold γ = 0.05, 0.1, 0.15, . . . , 0.95. An

enlargement at γ = 0.65 shows the tightness of this bound. By

setting the threshold γ = 0.35, Fig. 2 (right) shows the lower

bounds of Theorem 4 on the error of approximating any atom

with the other atoms of the dictionary, namely 1− (m−1) γ2

1−(m−2) γ ,

where m is the increasing dictionary size. It is worth noting

that these results can also be obtained with the distance

criterion with the threshold set to δ =
√
1− 0.352 ≈ 0.937.

Fig. 3 shows the bounds given in Section V-B for the quadratic

error of approximating the two most relevant principal axes,

where these principal axes are estimated at each instant t
on all samples available up to t. This figure also compares

these results with the ones obtained from the approximation

criterion, where the threshold is set to δ = 0.9, yielding

the same dictionary size and almost the same bounds as the

coherence criterion.

3The data are available from the Fuzzy Logic Toolbox of Matlab with
mgdata.dat
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VII. FINAL REMARKS

In this paper, we studied the approximation errors of any

sample when dealing with the distance or the coherence

criterion, revealing that these criteria are roughly based on an

approximation process, in the same sense as the approximation

criterion. To this end, we first established an upper bound

on the error of approximating a sample discarded from the

dictionary. As a consequence, we explored that the atoms

are “sufficient” to represent any sample. Then, we considered

the dual condition, namely that each atom of the dictionary

is “necessary”, by providing a lower bound on the error of

approximating any atom of the dictionary with the other atoms.

Moreover, beyond the analysis of a single sample, we extended

these results to the estimation of any pattern, by describing in

detail two classes of patterns, the centroid and the principal

axes in kernel-PCA, and including the approximation criterion

in our analysis.

This work did not devise any particular sparsification crite-

rion. It provided a unified framework to study online sparsifi-

cation criteria. We argued that these criteria behave essentially

in an identical mechanism, and share many interesting and

desirable properties. Without loss of generality, we considered

the framework of kernel-based learning algorithms. It is worth

noting that these machines are intimately connected with the

Gaussian processes [6], where the approximation criterion was

initially proposed [10].

APPENDIX

This appendix provides bounds on the eigenvalues of a

Gram matrix associated to a dictionary, for each of the sparsity

measures investigated in this paper. For completeness, these

bounds are put here in a nutshell; see [26, Section IV] for

more details. A cornerstone of these results is the well-known

Geršgorin Discs Theorem [36, Chapter 6]. Revisited here for

a Gram matrix associated to a dictionary, it states that any

of its eigenvalues lies in the union of the m discs, centered

on each diagonal entry of K̀ with a radius given by the sum

of the absolute values of the other m − 1 entries from the

same row. In other words, for each λ̀i, there exists at least

one j ∈ {1, 2, . . . ,m} such that

|λ̀i − κ(x̀j , x̀j)| ≤
m
∑

j=1

j 6=i

|κ(x̀i, x̀j)|. (18)

This theorem provides upper and lower bounds on the eigen-

values of a Gram matrix associated to a dictionary, as de-

scribed in the following for each sparsity measure.

Lemma A.1: The eigenvalues of a Gram matrix associated

to a δ-distant dictionary of m atoms are bounded as follows:

r2 − (m− 1)R
√

R2 − δ2 ≤ λ̀m ≤ · · ·
· · · ≤ λ̀1 ≤ R2 + (m− 1)R

√

R2 − δ2.

Proof: From (8), a δ-distant dictionary satisfies

|κ(x̀i, x̀j)| ≤
√

κ(x̀j , x̀j)
(

κ(x̀i, x̀i)− δ2
)

,
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Fig. 3. Illustration of the bounds (the two upper curves with solid lines) on
the quadratic errors (the two lower curves with solid lines) of approximating
the first (bold lines) and second (thin lines) most relevant principal axes, as
given in Theorem 7. Results obtained with the approximation criterion are
given in dotted lines.

}
}

for any i = 1, 2, . . . ,m, which yields
∑

j

|κ(x̀i, x̀j)| ≤
∑

j

√

κ(x̀j , x̀j)
(

κ(x̀i, x̀i)− δ2
)

=
√

κ(x̀i, x̀i)− δ2
∑

j

√

κ(x̀j , x̀j).

By substituting this relation in (18), we get that, for each

eigenvalue λ̀k, there exists at least one i such that

|λ̀k − κ(x̀i, x̀i)| ≤
√

κ(x̀i, x̀i)− δ2
m
∑

j=1

j 6=i

√

κ(x̀j , x̀j).

Lemma A.2: The eigenvalues of a Gram matrix associated

to a γ-coherent dictionary of m atoms are bounded as follows:

r2 − (m− 1)γR2 ≤ λ̀m ≤ · · · ≤ λ̀1 ≤ R2 + (m− 1)γR2.

Proof: A γ-coherent dictionary satisfies, for any i, j =
1, 2, . . . ,m,

max
j=1···m

j 6=i

|κ(x̀i, x̀j)| ≤ γ max
j=1···m

j 6=i

√

κ(x̀i, x̀i)κ(x̀j , x̀j)

= γ
√

κ(x̀i, x̀i) max
j=1···m

j 6=i

√

κ(x̀j , x̀j)

≤ γR
√

κ(x̀i, x̀i).

By inserting this expression into (18), we get
m
∑

j=1

j 6=i

|κ(x̀i, x̀j)| ≤ (m− 1) max
j=1···m

j 6=i

|κ(x̀i, x̀j)|

≤ (m− 1)γR
√

κ(x̀i, x̀i).

Since κ(x̀i, x̀i) ≤ R2, this completes the proof.
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[25] C. Saidé, R. Lengellé, P. Honeine, and R. Achkar, “Online kernel
adaptive algorithms with dictionary adaptation for mimo models,” IEEE
Signal Processing Letters, vol. 20, pp. 535–538, May 2013.

[26] P. Honeine, “Analyzing sparse dictionaries for online learning with
kernels,” IEEE Transactions on Signal Processing, (submitted) 2015.
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[30] L. Csató and M. Opper, “Sparse representation for gaussian process

models,” in Advances in Neural Information Processing Systems 13,
pp. 444–450, MIT Press, 2001.

[31] D. Nguyen-Tuong and J. Peters, “Incremental online sparsification for
model learning in real-time robot control,” Neurocomputing, vol. 74,
no. 11, pp. 1859 – 1867, 2011.

[32] R. Rosipal, M. Koska, and I. Farkas, “Prediction of chaotic time-series
with a resource-allocating RBF network,” in Neural Processing Letters,
pp. 185–197, 1997.

[33] B. Chen, S. Zhao, P. Zhu, and J. Principe, “Quantized kernel least
mean square algorithm,” Neural Networks and Learning Systems, IEEE
Transactions on, vol. 23, pp. 22–32, Jan 2012.

[34] M. Yukawa and R. Ishii, “An efficient kernel adaptive filtering algorithm
using hyperplane projection along affine subspace,” in Proceedings of

the 20th European Signal Processing Conference (EUSIPCO), pp. 2183–
2187, Aug 2012.

[35] W. Gao, J. Chen, C. Richard, and J. Huang, “Online dictionary learning
for kernel lms,” Signal Processing, IEEE Transactions on, vol. 62,
pp. 2765–2777, June 2014.

[36] R. A. Horn and C. R. Johnson, Matrix analysis. New York, NY, USA:
Cambridge University Press, 2nd edition ed., December 2012.

[37] E. Ma and C. Zarowski, “On lower bounds for the smallest eigenvalue
of a hermitian positive-definite matrix,” Information Theory, IEEE

Transactions on, vol. 41, pp. 539–540, Mar 1995.
[38] W. Sun, “Lower bounds of the minimal eigenvalue of a hermitian

positive-definite matrix,” Information Theory, IEEE Transactions on,
vol. 46, pp. 2760–2762, Nov 2000.

[39] D. Park and B. G. Lee, “On determining upper bounds of maximal
eigenvalue of hermitian positive-definite matrix,” Signal Processing
Letters, IEEE, vol. 10, pp. 267–269, Sept 2003.

[40] R. Turkmen and H. Civciv, “Some bounds for the singular values of
matrices,” Applied Mathematical Sciences, vol. 1, no. 49, pp. 2443–
2449, 2007.

[41] K. Hlavackova-Schindler, “A new lower bound for the minimal singular
value for real non-singular matrices by a matrix norm and determinant,”
Applied Mathematical Sciences, vol. 4, no. 64, pp. 3189–3193, 2010.

[42] L. Zou, “A lower bound for the smallest singular value,” Journal of

Mathematical Inequalities, vol. 6, no. 4, pp. 625–629, 2012.
[43] Z. Noumir, P. Honeine, and C. Richard, “Online one-class machines

based on the coherence criterion,” in Proc. 20th European Conference on
Signal Processing, (Bucharest, Romania), pp. 664–668, 27–31 August
2012.

[44] P. Honeine, “An eigenanalysis of data centering in machine learning,”
IEEE Transactions on Pattern Analysis and Machine Intelligence, (sub-
mitted) 2015.

PLACE
PHOTO
HERE

Paul Honeine (M’07) was born in Beirut, Lebanon,
on October 2, 1977. He received the Dipl.-Ing.
degree in mechanical engineering in 2002 and the
M.Sc. degree in industrial control in 2003, both from
the Faculty of Engineering, the Lebanese University,
Lebanon. In 2007, he received the Ph.D. degree in
Systems Optimisation and Security from the Uni-
versity of Technology of Troyes, France, and was
a Postdoctoral Research associate with the Systems
Modeling and Dependability Laboratory, from 2007
to 2008. Since September 2008, he has been an

assistant Professor at the University of Technology of Troyes, France. His
research interests include nonstationary signal analysis and classification,
nonlinear and statistical signal processing, sparse representations, machine
learning. Of particular interest are applications to (wireless) sensor networks,
biomedical signal processing, hyperspectral imagery and nonlinear adaptive
system identification. He is the co-author (with C. Richard) of the 2009
Best Paper Award at the IEEE Workshop on Machine Learning for Signal
Processing. Over the past 5 years, he has published more than 100 peer-
reviewed papers.


