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ABSTRACT

This paper presents an unsupervised Bayesian algorithm for
hyperspectral image unmixing accounting for endmember
variability. The pixels are modeled by a linear combination
of random endmembers, to take into account their variability
in the image, weighted by their corresponding abundances.
An additive noise is also considered in the proposed model
generalizing the normal compositional model. The proposed
Bayesian algorithm exploits the whole image to provide spec-
tral and spatial information. It estimates both the mean and
the covariance matrix of each endmember in the image. A
spatial segmentation is also obtained based on the estimated
abundances. Simulations conducted with synthetic and real
data show the potential of the proposed model and unmixing
strategy for the analysis of hyperspectral images.

Index Terms— Hyperspectral imagery, endmember vari-
ability, image classification, Hamiltonian Monte-Carlo.

1. INTRODUCTION

Spectral unmixing (SU) consists of decomposing the pixel
spectrum to recover physical materials, known as endmem-
bers, and estimating the corresponding proportions or abun-
dances [1]. The variation of endmember spectra along the im-
age has been identified as one of the most profound sources of
error in abundance estimation [2, 3]. This variation is called
spectral endmember variability (SEV) and is knowing grow-
ing interest in the hyperspectral community [2, 3]. Many al-
gorithms have been proposed in the literature to describe SEV
by considering each endmember as a finite set of spectra or as
a random vector with a given statistical distribution. The main
contribution of this paper is the consideration of SEV under
a statistical Bayesian framework. Two main approaches have
been considered in the literature assuming the endmembers
are random vectors: the Beta compositional model [4] and
the normal compositional model (NCM) [5–7]. This paper
proposes a generalization of the NCM model characterized
by Gaussian variability for the endmembers (as for the NCM)
and an additive Gaussian noise modeling fitting errors (which
was not present in the NCM). Moreover, the proposed model
considers a different mean and covariance matrix for each

endmember to analyze each component separately. These pa-
rameters are both estimated to generalize the works of [7] and
[6] that estimated only the endmembers means or the covari-
ances, respectively. This paper also considers spatial correla-
tion between pixels using Markov random fields (MRFs) as
already done in [8, 9]. The image is segmented into regions
sharing similar abundance characteristics which improves the
unmixing quality [8, 9].

An unsupervised Bayesian algorithm is proposed to
estimate the parameters associated with endmembers and
abundances. In addition to the abundance Dirichlet pri-
ors, it assumes appropriate prior for the remaining param-
eters/hyperparameters to satisfy the known physical con-
straints. However, the classical Bayesian estimators cannot
be easily computed from the resulting joint posterior. This
problem is alleviated by considering a Markov chain Monte
Carlo (MCMC) method that generates sample according to
the posterior of interest. The sampling is achieved in this pa-
per using a Gibbs sampler coupled with a Hamiltonian Monte
Carlo (HMC) method. HMC is well adapted for problems
with a large number of parameters to be estimated [10]. More
precisely, this paper considers a constrained-HMC (CHMC)
that has been introduced in [10, Chap. 5] and successfully
used for hyperspectral SU in [11].

The paper is structured as follows. The proposed mixing
model is introduced in Section 2. The different components
of the proposed Bayesian model are studied in Section 3. Sec-
tion 4 introduces the Gibbs sampler and the CHMC method
which will be used to generate samples asymptotically dis-
tributed according to the joint posterior of the unknown pa-
rameters and hyperparameters. Section 5 analyzes the perfor-
mance of the proposed algorithm when applied to synthetic
images. Results on real hyperspectral images are presented in
Section 6 whereas conclusions and future works are reported
in Section 7.

2. PROPOSED MIXING MODEL

Let N be the number of pixels of the observed hyperspectral
image. Each pixel yn, of size (L× 1), is observed by L spec-
tral bands. The classical LMM assumes the pixel spectrum
yn is a linear combination of R deterministic endmembers
sr, r ∈ {1, · · · , R}, corrupted by an independent additive



noise en as follows

yn =

R∑
r=1

arnsr + en (1)

with en ∼ N
(
0L, ψ

2
nIL
)
, 0L is an (L × 1) vector of 0, IL

is the (L × L) identity matrix, an = [a1n, · · · , aRn]T is the
(R× 1) abundance vector of the nth pixel.

As previously mentioned, the endmembers are generally
variable in the observed image [3]. In this paper, we introduce
a model taking into account this variability. The proposed
model can be seen as a generalization of the NCM model
(GNCM) since it introduces an additional residual Gaussian
noise e as follows

yn =

R∑
r=1

arnsrn + en = Snan + en (2)

where srn ∼ N
(
mr, diag

(
σ2
r

))
, Sn = [s1n, · · · , sRn],

σ2
r =

[
σ2
r1, · · · , σ2

rL

]
is the variance vector of the rth end-

member and M = [m1, · · · ,mR] is the (L × R) matrix
containing the endmember means of the image. The main
difference between model (2) and the LMM is that the end-
member matrix Sn depends on each observed pixel in order
to introduce the SEV. Each physical element is then repre-
sented in a given pixel by an endmember srn that has its own
Gaussian distribution whose variances σ2

r change from one
band to another. This allows the GNCM to capture the spec-
tral variations of each physical element with respect to each
spectral band. The additional Gaussian noise en makes the
proposed model more robust with respect to mismodeling.
Note finally that the proposed model reduces to the NCM for
ψ2
n = 0, ∀n. Thus, it generalizes the model of [6, 7] by con-

sidering a non-isotropic covariance matrix for each endmem-
ber. Finally, for both LMM and GNCM, the abundance vec-
tor an represents proportions and should satisfy the physical
positivity and sum-to-one (PSTO) constraints arn ≥ 0,∀r ∈
{1, . . . , R} and

∑R
r=1 arn = 1.

3. HIERARCHICAL BAYESIAN MODEL

This section introduces a hierarchical Bayesian model for the
proposed GNCM model. The unknown parameters of this
model include the endmember mean matrix M , the (R × L)
matrix Σ gathering the endmember variances (with Σr,l =
σ2
rl), the R × N abundance matrix A = [a1, · · · ,aN ], the

(1 × N ) label vector z and the (1 × N ) vector Ψ containing
the noise variances (with Ψn = ψ2

n).

3.1. Likelihood

Using the observation model (2), the Gaussian properties of
both the noise sequence en and the endmembers, and exploit-

ing independence between the observations in different spec-
tral bands, yield

f(yn|A,M ,Σ, z,Ψ) ∝

(
1∏L

l=1 Ωln

) 1
2

× exp

{
−1

2
ΛT

:n [(yn −Man)� (yn −Man)]

}
(3)

where Ω = ΣT (A�A) +K is an (L × N ) matrix, K =
1L⊗Ψ is an (L×N ) matrix whose rows are equal to Ψ, 1L is
an (L×1) vector of 1, Λ is an (L×N ) matrix with Λln = 1

Ωln
,

� denotes the Hadamard (termwise) product and ⊗ denotes
the Kronecker product. Moreover, contrary to the LMM, Eq.
(3) shows that the elements1 of Ω depend jointly on the pixel
abundances and on the pixel index #n. This property was
also satisfied by the NCM model as previously shown in [6,
7]. Note finally that by assuming independence between the
observed pixels, the joint likelihood of the observation matrix
f(Y |T ,M ,Σ, z,Ψ) can be expressed as the product of the
N likelihoods shown in (3).

3.2. Parameter/hyperparameter priors

This section introduces the prior distributions that we have
chosen for the parameters of interest z,A,M , Ψ and Σ.

3.2.1. Classification prior modeling

This paper considers the spatial correlation between the im-
age pixels by dividing the observed image into K classes
sharing the same abundance properties [9]. Each pixel is
assigned to a specific class by using a latent label variable
zn. A Markov random field prior is then assigned for zn
as follows f

(
zn|z\n

)
= f

(
zn|zν(n)

)
, where ν(n) de-

notes the pixel neighborhood (a four neighborhood structure
will be considered in this paper), zν(n) = {zi, i ∈ ν(n)}
and z\n = {zi, i 6= n}. As in [8, 9, 12], this paper con-
siders a Potts-Markov model which is appropriate for hy-
perspectral image segmentation. The prior of z is ob-
tained using the Hammersley-Clifford theorem, f (z) =

1
G(β) exp

[
β
∑N
n=1

∑
n′∈ν(n) δ (zn − zn′)

]
, where β > 0 is

the granularity coefficient, G(β) is a normalizing (or par-
tition) constant and δ(.) is the Dirac delta function. The
parameter β controls the degree of homogeneity of each re-
gion in the image. It is assumed known a priori in this paper.
However, it could be also included within the Bayesian model
and estimated using the strategy described in [13].

3.2.2. Abundance matrixA

A Dirichlet prior is assigned to the abundances to satisfy the
physical PSTO constraints [14]. Each spatial class k is as-
signed a different Dirichlet parameters ck = (c1k, · · · , cRk)T

1The matrix Ω gathers the noise and endmember variances.



as follows

an|zn = k, ck ∼ Dir(ck), for n ∈ Ik (4)

where Dir(.) denotes the Dirichlet distribution, and n ∈ Ik
means that yn belongs to the kth class (which is also equiv-
alent to zn = k). This prior allows the data to be lo-
cated in several different clusters inside the simplex [14].
Moreover, to simplify the sampling procedure, we use the
reparametrization from an to the (R − 1) × 1 vector tn
introduced in [15]. This reparametrization expresses the
physical PSTO constraints by only using nonnegativity con-
straint tn ∈ [0, 1]

R−1, which is easily handled by the sam-
pling procedure (see [11, 15] for more details about this
reparametrization). Note finally that assigning a Dirichlet
prior for an corresponds to a beta distribution prior for the
independent coefficients trn, r ∈ {1, · · · , R− 1} and that
f(tn|zn = k, ck) =

∏R−1
r=1 f(trn|zn = k, ck).

3.2.3. Endmember means

The endmember mean matrix M contains reflectances that
should satisfy the following constraints 0 < mrl < 1,∀r ∈
{1, · · · , R} ,∀l ∈ {1, · · · , L} [11]. Therefore, we choose a
truncated Gaussian prior for each endmember [7, 11] as fol-
lows mr ∼ N[0,1]L

(
m̃r, ε

2Il
)
, where m̃r denotes an esti-

mated endmember (resulting from an endmember extraction
algorithm such as VCA [16]) and ε2 is a variance term defin-
ing the confidence that we have on this estimated endmember
m̃r.

3.2.4. Endmember variances

The absence of knowledge about the endmember variances
can be considered by choosing a Jeffreys distribution for the
parameters σ2

rl, i.e., f (Σ:l) ∝
∏R
r=1

1
σ2
rl

1R+

(
σ2
rl

)
,where

we have assumed prior independence between the endmem-
ber variances.

3.2.5. Noise variance prior

To ensure sparsity, the noise variance is assigned an expo-
nential prior f

(
ψ2
n|λ
)
= λ exp

(
−λψ2

n

)
1R+

(
ψ2
n

)
, where λ

is a large coefficient imposing sparsity for ψn (λ = 107 in
our simulations). We furthermore assume prior independence
between the random variables ψ2

n,∀n ∈ {1, · · · , N}.

3.2.6. Dirichlet parameters

The Dirichlet parameters ck are assigned the conjugate prior
described in [17]. The parameter of this prior have been cho-
sen to ensure a non-informative prior (flat distribution) [18].

3.3. Posterior distribution

The parameters of the proposed Bayesian model are included
in the vector θ = {θp,θh} where θp = {A,M ,Σ, z,Ψ}
(parameters) and θh = {C} (hyperparameters).

The joint posterior distribution of the unknown parame-
ter/hyperparameter vector θ can be computed from the fol-
lowing hierarchical structure

f (θp,θh|Y ) ∝ f (Y |θp,θh) f (θp,θh) (5)

where f (Y |θp,θh) = f (Y |θp) and f (θp,θh) = f (T |C)
f (M) f (Σ) f (z) f (Ψ) f (C), where we have assumed
prior independence between the parameters.

Unfortunately, it is difficult to obtain closed form expres-
sions for the standard Bayesian estimators associated with (5).
In this paper, we propose to use MCMC methods to gener-
ate samples asymptotically distributed according to (5) and
to build estimators of θ from these generated samples. Due
to the large number of parameters to be sampled, we use a
CHMC algorithm which improves the mixing properties of
the sampler [10]. The parameters are finally estimated us-
ing the minimum mean square error (MMSE) estimator for
{A,M ,Σ,Ψ,C} and the maximum a posteriori (MAP) es-
timator for the labels z. The next section defines the proposed
sampling procedure based on a hybrid Gibbs sampler includ-
ing a CHMC method.

4. HYBRID GIBBS ALGORITHM

The principle of the Gibbs sampler is to generate samples ac-
cording to the conditional distributions of the target distribu-
tion f (θp,θh|Y ) [19]. In this paper, we propose to sample
sequentially the abundance matrix A, the mean endmember
matrix M , the variance of endmembers Σ, the labels z, the
noise variances Ψ and the Dirichlet parameters C.

The abundance matrix A or equivalently T It can be
shown that the N vectors tn, n ∈ {1, · · · , N} are a posteri-
ori independent in each spatial class k. Moreover, using the
likelihood (3) and the prior distribution f(tn|zn = k, ck) pro-
vides the conditional distribution for tn. The CHMC frame-
work is used for sampling the independent vectors tn, n ∈
{1, · · · , N} in an effective parallel procedure that reduces
the computational cost (see [18] for more details about the
CHMC procedure).

The endmember meanM It can be shown from (5) that
the M rows (M `:) are a posteriori independent. Moreover,
straightforward computations shows that f (M l:|Y l:,T ,Σ:l)
is a truncated Gaussian distribution that is easily sampled us-
ing a parallel CHMC procedure (see [18] for more details).

The endmember variance Σ The conditional distribu-
tion of Σ:` is proportional to the product of the joint likeli-
hood f(Y |T ,M ,Σ, z,Ψ) with the Jeffreys distribution de-
scribed in section 3.2.4. The resulting distribution has a com-
plex form and is sampled using a parallel HMC algorithm.

The labels z Sampling zn from its conditional distribu-
tion can be performed by drawing a discrete value in the finite
set {1, · · · ,K} with known probabilities.

The noise variance Ψ The conditional distribution of ψn
is proportional to the product of the likelihood (3) with the



exponential distribution described in section 3.2.5. The re-
sulting distribution has a complex form and is sampled using
a parallel HMC algorithm.

The Dirichlet coefficients ck The conditional distribution
of ck|T , zn∈Ik has a complex form and is also sampled using
an HMC procedure.

5. SIMULATION RESULTS ON SYNTHETIC DATA

This section considers a 50 × 50 synthetic image generated
according to (2) with R = 3 endmember means (construc-
tion concrete, green grass and micaceous loam) that have
been extracted from the ENVI software library [20]. Each
endmember has its own distribution whose variance changes
with respect to spectral bands. This image contains K = 3
classes whose label maps have been generated using the Potts-
Markov prior with β = 1.5. The abundances of each class
share the same Dirichlet parameters as previously explained.
Note that the generated abundances have been truncated
(ar < 0.9,∀r) to avoid the presence of pure pixels in the
image. Finally, we have considered a noise variance equal to
10−7. The proposed unsupervised GNCM-based algorithm,
denoted by UsGNCM, has been run using Nbi = 11000 burn-
in iterations and NMC = 12000 iterations. Our algorithm is
compared with state of the art algorithms: (i) VCA+FCLS:
the endmembers are extracted from the whole image using
VCA [16] and the abundances are estimated using the FCLS
algorithm [21], (ii) UsLMM: the unsupervised Bayesian al-
gorithm of [22] is used to jointly estimate the endmembers
and abundances, (iii) AEB: this is the automated endmember
bundles algorithm proposed in [23] (used with 10% image
subset and the VCA algorithm), and (iv) UsNCM: the pro-
posed unmixing strategy with ψn = 0 (i.e., the additive noise
en of (2) is removed). In this case, the resulting algorithm
reduces to the NCM model.

Table 1 reports the quality of the estimated abundances
and endmembers when considering the averaged root mean
square error (aRMSE) and the averaged spectral angle mapper
(aSAM) criteria [18]. This table shows bad performance for
VCA+FCLS and AEB algorithms which is mainly due to the
absence of pure pixels in the considered images. The UsLMM
provides good results, however, it appears to be sensitive to
the variation of endmember/noise variances with respect to
the spectral band and to the spatial correlations between adja-
cent pixels. Indeed, the UsLMM did not consider spatial cor-
relation which leads to a performance reduction. Note also
that the UsLMM algorithm provides one estimate for each
endmember and does not take into account the spatial vari-
ability of endmembers in the processed image. The best per-
formance is obtained by the proposed UsNCM and UsGNCM
strategies that provide almost similar results. However, the
UsGNCM shows better results thanks to the consideration of
additive noise. These results confirm the superiority of the
proposed approach in presence of SEV, spatial correlation be-

Table 1. Results on synthetic data.
Criteria (×10−2)

aRMSE aRMSE aSAM
(A) (M) (M)

VCA+FCLS 3.71 2.68 6.74
UsLMM 0.76 0.49 0.94

AEB 9.46 4.20 8.72
UsNCM 0.56 0.19 0.43

UsGNCM 0.48 0.16 0.41

tween pixels and in absence of pure pixels in the observed
scene.

6. SIMULATION RESULTS ON REAL DATA

This section illustrates the performance of the proposed Us-
GNCM algorithm when applied to a real hyperspectral data
set. The considered real image was acquired in 2010 by the
Hyspex hyperspectral scanner over Villelongue, France. The
dataset contains L = 160 spectral bands, 50 × 50 pixels and
R = 4 components: tree, grass, soil and shadow (see Fig. 1
(left)).

(a) Madonna image. (b) Classification map.

Fig. 1. Real Madonna image and the estimated classification
map using UsGNCM.

The estimated abundances using the UsGNCM algorithm
are in good agreement with the FCLS and UsLMM results.
These results are not presented here for brevity (see [18]
for more details). In addition to unmixing, UsGNCM also
provides a spatial segmentation of the considered scenes as
shown in Fig. 1 (right). These classifications clearly highlight
the area of each physical element in the scene. UsGNCM
estimates both the mean and variance of each physical ele-
ment in the scene which provides a measure the SEV in the
considered image. Fig. 2 shows the estimated endmember
distributions as blue level areas for each endmember. These
distributions are in good agreement with the point estimates
of VCA and UsLMM algorithms.

7. CONCLUSIONS

This paper introduced a Bayesian model for unsupervised un-
mixing of hyperspectral images accounting for SEV. The pro-
posed algorithm was based on a generalization of the NCM



Fig. 2. The R = 4 endmembers estimated by VCA (contin-
uous red lines), UsLMM (continuous black lines), UsGNCM
(continuous blue lines) and the estimated endmember distri-
bution (blue level areas) for the Madonna image.

and includes an additive Gaussian noise for modeling errors.
This algorithm estimated the endmembers of the scene, their
variabilities provided by their variances and the correspond-
ing abundances. The observed image was also spatially seg-
mented into regions sharing homogeneous abundance char-
acteristics. The physical constraints of the abundances were
ensured by choosing a Dirichlet distribution for each spatial
class of the image. Due to the complexity of the resulting
joint posterior distribution, an MCMC procedure based on a
Gibbs algorithm was used to sample the posterior of interest
and to approximate the Bayesian estimators of the unknown
parameters using the generated samples. The sampling was
achieved using an HMC method which is well suited for prob-
lems with a large number of parameters. The proposed algo-
rithm showed good performance when processing data pre-
senting SEV, spatial correlation between pixels and in absence
of pure pixels in the observed scene. Future work includes the
study of SEV with nonlinear mixing models. This point is an
interesting issue that is currently under investigation.
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