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Abstract. The security of critical infrastructures has gained a lot of
attention in the past few years with the growth of cyberthreats and the
diversity of cyberattacks. Although traditional IDS update frequently
their databases of known attacks, new complex attacks are generated
everyday to circumvent security systems and to make their detec-
tion nearly impossible. This paper outlines the importance of one-class
classification algorithms in detecting malicious cyberattacks in critical
infrastructures. The role of machine learning algorithms is complemen-
tary to IDS and firewalls, and the objective of this work is to detect
intentional intrusions once they have already bypassed these security sys-
tems. Two approaches are investigated, Support Vector Data Description
and Kernel Principal Component Analysis. The impact of the metric in
kernels is investigated, and a heuristic for choosing the bandwidth para-
meter is proposed. Tests are conducted on real data with several types
of cyberattacks.

Keywords: Critical infrastructures · Intrusion detection · One-class
classification · SCADA systems

1 Introduction

Nowadays, the control of the majority of critical infrastructures is accomplished
via Supervisory Control And Data Acquisition (SCADA) systems, which allow
remote monitoring and control to physical systems such as electrical power grids,
oil and natural gas pipelines, chemical processing plants, water distribution,
wastewater collection systems and nuclear power plants [1]. The principal com-
ponents of SCADA systems are: (a) The Human Machine Interface (HMI) allows
operators to monitor the state of the process under control and modify its con-
trol settings, (b) the Master Terminal Unit (MTU) stores and processes the
information from the field and transmits control signals, and (c) the Remote
Terminal Units (RTU) receive commands from the MTU to control the local
process, acquire data from the field and transmit it to the MTU. The common
protocols (ModBus, Profibus, DNP3) used in the communication between these
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components present many vulnerabilities [2]. These protocols do not perform
any authentication mechanism between Master and Slave, do not check for the
integrity of the command packets and do not apply any anti-repudiation or anti-
replay mechanisms [3].

First generations of SCADA networks operate in isolated environments, with
no connectivity to any system outside the network. Nowadays, SCADA systems
use public network for system-to-system interconnection, which has introduced
numerous vulnerabilities and has exposed the critical infrastructures to new
sources of potential threats [4]. Many intentional cyberattacks against critical
infrastructures relying on SCADA networks occured in the past few years. In
2000, an ex-employee of Maroochy Water Services in Australia released one
million liters of untreated sewage into local parks and rivers [5]. In 2003, the
Slammer worm penetrated Ohios Davis-Besse nuclear power plant and disabled
a safety monitoring system for nearly five hours [6]. In 2006, a hacker penetrated
a water filtering plant in Pennsylvania (USA) and installed malicious software
capable of affecting the plants water treatment operations [7]. In 2009, cyberspies
penetrated the U.S. electrical grid and left behind software programs that could
be used to disrupt the system [8]. The most complex malware Stuxnet was
discovered 2010. It installs malicious programs replacing the PLCs original file
in a manner undetectable by the PLC operator [9]. The ultimate goal of Stuxnet
was to sabotage nuclear centrifuges used for enriching uranium [10].

The vulnerabilities in the communication protocols between SCADA com-
ponents and the intensive use of internet and communication technologies have
increased the cyberthreats and opened new ways for carrying out cyberattacks
against critical infrastructures relying on SCADA networks [11]. For these rea-
sons, securing the critical infrastructures has become the ultimate priority of
the researchers with the growth of cyberthreats and the diversity of aforemen-
tioned cyberattacks. Yang et al. proposed in [12] a signature-based approach
that matches signatures of known attacks with the network traffic, and a model-
based approach for detecting intrusions in SCADA systems. The first one cannot
detect new attacks not existing in their databases, and the second one needs the
existence of the exact system’s model which is not the case for the majority
of the critical infrastructures. A Bayesian network was implemented in [13] to
reduce the false positive rate, but this statistical model relies on the condi-
tional dependencies between the system’s variables. A collaborative intrusion
detection mechanism using a centralized server that dispatches activities coming
from suspicious IP addresses was proposed in [14]. This approach do not pro-
vide any specific technique for identifying high level and complex cyberattacks.
Carcano et al. presented in [15] a critical state-based IDS for a given industrial
installation, which can only detect a particular type of cyberattacks against
PLC systems. Morris et al. elaborated a SCADA testbed in [16,17], where false
commands and responses were injected into the SCADA network to investi-
gate the vulnerabilities of functional control systems. Cyberattacks studied in
their testbed include command injection, response injection and denial of service
(DOS) attacks. The complexity of the critical infrastructures and the diversity
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of cyberthreats restrict the use of model-based approaches, and emphasize the
potential role of non-parametric methods in detecting intrusions.

Real world data analysis problems require, most of the time, nonlinear meth-
ods for detecting patterns and interdependencies within the data [18]. Machine
learning techniques have become very popular in the past few years since they
provide a powerful way for detecting nonlinear relations using linear algorithms
in the feature space [19,20]. This paper outlines the complementary role of
machine learning algorithms to traditional IDS in detecting intrusions in critical
infrastructures. Two distinct approaches are investigated, the Support Vector
Data Description (SVDD) [21] and the Kernel Principal Component Analysis
(KPCA) [22]. This paper also studies the impact of varying the metric norm
in the kernel functions, and proposes a heuristic for choosing the bandwidth
parameter without any computational costs. The tests are conducted on real
data from the gas pipeline testbed [16,17]. The remainder of this paper is orga-
nized as follows. Section 2 provides an overview on kernel methods for one-class
classification, namely the SVDD and the KPCA. Section 3 discusses the met-
ric variation and the heuristic for choosing the bandwidth parameter. Section 4
describes the gas pipeline testbed and the results on the real datasets. Section 5
provides conclusion and future works.

2 Kernel Methods for One-Class Classification

kernel methods have been widely used in the past few years to discover hid-
den regularities in large volumes of data [18]. They use positive definite kernel
functions to map the data into a reproducing kernel Hilbert space (RKHS) via
the mapping function φ(·), and provide an elegant way to learn a nonlinear sys-
tem without the need of an exact physical model [23]. In industrial systems, the
majority of the available data designates the normal functional mode, and it
is very difficult to acquire data related to malfunctioning or critical states [24].
For this reason, the role of one-class classification has been growing in detecting
machine faults and intrusions, especially in critical infrastructures [25–27]. Each
training sample xi can represent measurements such as the gas pressure in a
specific time, the temperature, the water level, the pressure for three consecu-
tive instants, etc. One-class classification algorithms learn the normal behavior
of the system through the relations between these components, and a decision
function tests new samples to classify them as normal or outliers (suspicious
behavior).

2.1 Support Vector Data Description

Support Vector Data Description (SVDD) estimates a spherically shaped deci-
sion boundary with minimum radius that encloses most of the training data
φ(xi) in the feature space H [21]. The hypersphere is characterized by its center
a and its radius R > 0, and we minimize its volume by minimizing R2. The
presence of some outliers in the training set is allowed by introducing the slack
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variables ξi ≥ 0. Samples that lay outside this description are considered out-
liers, and they should be rejected. This boils down to the following constrained
optimization problem:

min
a,R,ξi

R2 +
1

νN

N∑

i=1

ξi (1)

subject to ∥φ(xi) − a∥2H ≤ R2 + ξi and ξi ≥ 0 ∀i = 1, ..., N . The predefined
parameter ν represents an upper bound on the fraction of outliers, and regulates
the trade-off between the volume of the hypersphere and the number of outliers.
Considering the Lagrangian of the above constrained optimization problem, and
incorporating the relations from its partial derivatives with respect to R, a and
ξi gives us the following objective functional to be maximized with respect to
the Lagrangian multipliers αi : L =

∑N
i=1 αik(xi,xi) −

∑N
i,j=1 αiαjk(xi,xj),

subject to
∑N

i=1 αi = 1 and 0 ≤ αi ≤ 1/νN . The solution of this quadratic
programming problem is found using any off-the-shelf optimization technique,
i.e., matlab’s function quadprog.

In order to evaluate a new sample z, we calculate the distance between the
center of the sphere a and φ(z) in the feature space. If this distance is smaller
than the radius, namely ∥φ(z) − a∥2H ≤ R2, z is accepted as a normal sample.
Otherwise, z is considered as an outlier and an intrusion is detected. The radius
of the optimal hypersphere is obtained with the distance in the feature space H
from the center a to any sample φ(xk) on the boundary:

R2 = k(xk,xk) − 2
N∑

i=1

αik(xk,xi) +
N∑

i,j=1

αiαjk(xi,xj).

2.2 Kernel Principal Component Analysis

Kernel Principal Component Analysis (KPCA) is a nonlinear application of
PCA in a kernel-defined feature space, where using k(x,y) = (x · y) is equiv-
alent to performing the original PCA [22]. Hoffmann proposed in [26] the use
the reconstruction error as a measure of novelty, since it takes into account the
heterogeneous variance of the distribution of the data in the feature space. The
first step in Hoffman’s algorithm is to find eigenvalues λ and eigenvectors v of
the covariance matrix C̃ in the feature space H, satisfying λv = C̃v. The sec-
ond step is to project the data into the subspace spanned by the most relevant
eigenvectors. Each v is a linear combination of the mapped data and takes the
following form: v =

∑N
i=1 αiφ(xi), and the coefficients αi are given by solving the

following eigen decomposition problem Nλα = K̃α. The centered kernel matrix
K̃ is used in the optimization problem without the need to compute directly C̃.

After projecting the data into the subspace spanned by the most relevant
eigenvectors, the distance between each sample and its projection is computed.
This distance is the reconstruction error, and it is used for novelty detection. Let
P be the projection operator, the reconstruction error is computed as follows:

∥φ̃(z) − Pφ̃(z)∥2H = ⟨φ̃(z), φ̃(z)⟩ − 2⟨φ̃(z),Pφ̃(z)⟩ + ⟨Pφ̃(z),Pφ̃(z)⟩. (2)
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Knowing in advance the number of outliers among the training dataset, an error
threshold is fixed. If the reconstruction error of a new sample is smaller than this
threshold, the corresponding sample is treated as a normal sample. Otherwise,
it is considered as an outlier and an intrusion is detected.

3 Metric Variation and Parameter Optimization

The Gaussian kernel is adopted in our simulations, since it is the most common
and suitable kernel for one-class classification problems [28]. The Gaussian kernel
is given as follows: k(xi,xj) = exp(−∥xi−xj∥2

2
2σ2 ), where xi and xj are input

samples, ∥ ·∥2 represents the l2-norm in the input space, and σ is the bandwidth
parameter of the kernel. The choice of the metric and σ has a great impact on
the decision function of the classifier. The variation of the norm and the heuristic
for choosing the bandwidth parameter are detailed in the next subsections.

3.1 Norm Variation

In order to understand the impact of lp-norm on the classifier, the variation in the
behavior of different norms in a 2-dimensional space is illustrated in Fig. 1. Each
sample has two characteristics, feature 1 and feature 2, and p takes one of the
values 3

4 , 1,
3
2 , 2, 3, 4, 7 and ∞. Each color represents equidistant contours with

reference to the origin O. The following example clarifies the different behavior
of several norms towards the same sample. The samples B and C are equidistant
from the origin O with the l2-norm, and D is much closer. However, for the l1-
norm, C and D are equidistant and much closer than B. Therefore, as p decreases,
the norms are more sensitive on simultaneous variations of multiple features
which become as important as large variation in a single one.
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Fig. 1. The variation in the behavior of different norms ranging from p = 0.75 to
p = ∞, where each color represents equidistant contours with reference to the origin
O. The norms become more sensitive on simultaneous variation of multiple features as
p decreases (Color figure online).
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In critical infrastructures and industrial processes, the value of each vari-
able is important to evaluate the state of the system, and to predict whether
the process is leading to a critical state. The diversity of the studied physical
processes requires more adapted kernels that depend on the behavior of the mea-
sured variables, i.e., the pressure inside a gas pipeline, the water level of a water
distribution system, the temperature of a boiling water reactor, etc. For this rea-
son, the choice of the norm in kernels affects the distribution of the data in the
feature space, and has a great impact on the decision function of the classifier.

3.2 Choice of the Bandwidth Parameter

The performance of classification algorithms is highly related to the choice of the
bandwidth parameter σ, as well as on the kernel’s norm. σ plays a crucial role in
defining the description boundary around the training data. With a large value
of σ, the classifier underfits the data and we obtain a loose description boundary,
where a small value of σ leads to overfitting. Several approaches were proposed
in the literature for computing this parameter, but they are time consuming and
do not always lead to an optimal choice [29–31].

The bandwidth parameter σ depends on multiple features, namely the spread
of the training dataset, the number of input samples and the fraction of samples
considered as outliers [32]. The estimation of σ should take into consideration
all these factors. Therefore, we propose to use in the one-class classification
algorithms the following expression for computing σ:

σ =
dmax√
2M

,

where dmax refers to the maximal distance between any two samples in the input
space, and M represents the upper bound on the number of outliers among
the training dataset. The metric of the distance used in the kernel function
is the same as the one in the expression of σ. The experiments showed that
this proposed heuristic gives remarkable results without the need for the time
consuming cross-validation step.

Fig. 2. Gas pipeline testbed
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4 Results on the Gas Pipeline Testbed

In this paper, one-class classification algorithms are applied on real data from
the gas pipeline testbed of the Mississippi State University SCADA Laboratory
[16,17]. The gas pipeline illustrated in Fig. 2 is used to move natural gas or
any other petroleum products to the market. Its control system contains an air
pump that pumps air into the pipeline, a pressure sensor which allows pressure
visibility at the pipeline and remotely on the HMI, a release valve and a solenoid
release valve to loose air pressure from the pipeline. This testbed represents a
typical SCADA system embracing a MTU, RTU and a HMI. Cyberattacks on
the gas pipeline monitoring system can cause a loss of control of the physical
process, and this may lead to huge financial and physical losses.

The pipeline operates in three principal modes; the first mode is character-
ized by a very low pressure maintained around 0.1 PSI, the second mode keeps it
around 10 PSI (9 to 11 PSI), while the third mode should maintain the pressure
around 20 PSI (18 to 22 PSI). The pressure greater than 22 PSI and the tran-
sitional states between different modes are considered as outliers. Several types
of false commands and responses are injected into the normal behavior zone
of the system to make its behavior abnormal. The fast change response attack
returns measurements that change very fast opposed to the normal behavior
of the pipeline. The burst response injection attack injects at high frequency a
single value equals to 20 PSI while the system is running in several modes. The
wave response injection attack injects pressure responses that vary in a wave
form around 9 PSI which imitates exactly the second normal mode, while the
real system is dealing with high pressures in the third mode. The primary objec-
tive of this paper is to detect these common and dangerous attacks that imitate
the normal behavior of the system, and hide the real functioning status.
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Fig. 3. Results on the gas pipeline real data with the KPCA approach. The decision
boundaries are given by the green lines, the outliers correspond to the red samples and
the normal samples are in blue. The l2-norm (left) gives a good description while the
infinite norm (right) underfits the data with a loose descriptions (Color figure online).
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Table 1. Time computational cost of several approaches for computing the bandwidth
parameter.

approach 5-fold CV 11-value range for σ limited range (5 values) proposed heuristic

SVDD 8h 5min 2 h 58min 1 h 26min 14.78 s

KPCA 3h 47min 1 h 32min 34.6min 14.78 s
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Fig. 4. The error detection and the false alarm probabilities as a function of the band-
width parameter σ. The proposed heuristic leads to σ = 0.9427 with the highest error
detection and the lowest false alarm rates.

Let x(t) be the pressure in the pipeline at instant t. In normal functioning
modes, the pressure measurements of two consecutive instants must be close to
each other, and a gap between two consecutive instants may be a strong sign
of a cyberattack. Therefore, the time series is folded into 2-dimensional input
vectors composed of the pressure at instant t and the difference in the pressure
between instants t and t − 1, namely xt = [x(t) x(t) − x(t − 1)]. The training
phase is made on a train set of 2000 samples, and the tests are conducted on five
different test sets containing several types of cyberattacks. The outliers in the
test sets represent the simulated attacks that have to be detected by one-class
classification algorithms. The different types of attacks are shown in Fig. 5.

The results on real data from the gas pipeline testbed for the KPCA app-
roach are shown in Fig. 3. The decision boundary encloses the samples accepted
as normal data, while the samples considered as outliers are rejected outside
the boundary. The best results are obtained with the l2-norm and the l1-norm,
having a tight decision boundary enclosing the normal behavioral modes. For
small values of p, the norms become very sensitive to simultaneous variation of
multiple features, and this leads to overfitting the data. On the other hand, the
results for the values of p greater than p = 2 become worse as p increases, with a
loose decision boundary that underfits the data. We have similar results with the
SVDD approach. The prediction time for testing a new sample is 0.096 s with
SVDD and 0.049 s with KPCA, which is very interesting in monitoring criti-
cal infrastructures. The error probabilities of the different types of cyberattacks
are detailed in Table 2. The l1-norm outperforms the l2-norm in the wave and
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Fig. 5. Detection of outliers for several types of attacks with the SVDD approach using
the l1-norm. The blue samples refer to the data accepted as normal data while the red
samples are considered as outliers (Color figure online).

the slow response injection attacks, where the data contain small simultaneous
variation of its features. The best results are achieved with the slow and the
single attacks having error detection probabilities around 99.52%. We note that
since these injections have already bypassed IDS and firewalls, the detection of
the malicious attacks by operators comes mostly far too late after some severe
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Table 2. The confusion matrix of several types of attacks with the KPCA approach.

l2-norm l1-norm

Normal Outlier Normal Outlier

Slow injection Normal 99.41 0.59 99.7 0.3

Outlier 0.95 99.05 0.48 99.52

Fast injection Normal 98.3 1.7 99.35 0.65

Outlier 11.6 88.4 11.6 88.4

Burst injection Normal 99.3 0.7 99.3 0.7

Outlier 27.9 72.1 31.33 68.67

Single injection Normal 98.37 1.63 99.2 0.8

Outlier 0.78 99.22 0.78 99.22

Wave injection Normal 98.8 1.2 98.09 1.91

Outlier 35.1 64.9 34.21 65.79

consequences on the industry. This is where machine learning techniques play a
crucial role to learn the industrial systems in order to detect all kinds of intru-
sions and avoid physical, financial and human lives losses.

The bandwidth parameter is computed as detailed in the previous section. We
compared the time computational cost of the proposed heuristic with three other
common methods existing in the literature as shown in Table 1. Our approach
is clearly hundreds of times faster than the other methods, and it takes exactly
the same time with SVDD and KPCA. In addition, the error detection and the
false alarm probabilities for several values of σ are computed, and the results
are illustrated in Fig. 4. The proposed heuristic leads to σ = 0.9427 having the
highest error detection rates and the lowest false alarm rates, which confirms its
relevance.

5 Conclusion

In this paper, we showed the importance of the complementary role of one-class
classification algorithms in detection malicious cyberattacks in critical infrastru-
cres relying on SCADA systems. The tests were conducted on real data contain-
ing several types of cyberattacks. We studied the impact of varying the norm in
the kernels on the decision function of the classifier. We also proposed a simple
heuristic for computing the bandwidth parameter of the Gaussian kernel, which
led to the highest error detection and the lowest false alarm rates with mini-
mum time computational cost. For future works, we are investigating a sparse
one-class classification approach that should fasten the learning phase of the
system. We are also working on increasing the performance of the algorithm by
decreasing the time to test new samples. Finally, online one-class classification
techniques should be integrated in the security systems critical infrastructures
to improve the live detection of cyberattacks and reduce their consequences.
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