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Abstract

The massive use of Information and Communication Technologies in Supervi-

sory Control and Data Acquisition (SCADA) systems has opened new ways

for carrying out cyberattacks against critical infrastructures relying on SCADA

networks. The various vulnerabilities in these systems and the heterogeneity of

cyberattacks has made the task more difficult for traditional Intrusion Detec-

tion Systems. Modeling cyberattacks has become nearly impossible, and their

potential consequences may be very severe. This paper investigates the use of

Lp-norms in Radial Basis Function kernels for intrusion detection in SCADA

systems using one-class classification algorithms. Two approaches of one-class

classification are investigated, the Support Vector Data Description and the

Kernel Principle Component Analysis. A heuristic is proposed to find the op-

timal choice of the bandwidth parameter in RBF kernels. Tests are conducted

on simulated data, and on real data containing several types of cyberattacks.



1 Introduction

Supervisory Control and Data Acquisition (SCADA) systems provide remote ac-

cess an control to critical infrastructures such as electrical power grids, oil and

natural gas pipelines, chemical processing plants, water distribution, wastewa-

ter collection systems and nuclear power plants [1]. The principal components

of SCADA systems [2] are: a) The Human Machine Interface (HMI) allows op-

erators to monitor the state of the process under control and modify its control

settings, b) the Master Terminal Unit (MTU) stores and processes the informa-

tion from the field and transmits control signals and c) Remote Terminal Units

(RTU) receive commands from the MTU to control the local process, acquire

data from the field and transmit it to the MTU. The common protocols (Mod-

Bus, Profibus, DNP3) used in the communication between these components

present some vulnerabilities [3]. These protocols don’t perform any authentica-

tion mechanism between Master and Slave, don’t check for the integrity of the

command packets and don’t apply any anti-repudiation or anti-replay mecha-

nisms.

In addition to the vulnerabilities in the communication between their com-

ponents, SCADA systems are facing today significant threats of cyberattacks

due to the increasing dependence of their communications to the internet [4].

Security threats can be grouped into three categories: Hackers, insiders and

malwares [5]. The hackers can access SCADA networks, collect data flows and

inject false commands with the intention to disrupt the physical system under

control. Insiders are the personnel of the facility having a legitimate access to

the network and may cause damages to the infrastructure. The malwares are

viruses, worms, trojans and spywares that can affect the operating systems and

the softwares of the facility.

The past decade has witnessed several intentional cyberattacks against crit-

ical infrastructures relying on SCADA networks. In 2000, an ex-employee of

Maroochy Water Services in Australia took control of 150 sewage pumping sta-

tions and released one million liters of untreated sewage into local parks and
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rivers [6]. In 2003, the Slammer worm penetrated a private computer network at

Ohios Davis-Besse nuclear power plant and disabled a safety monitoring system

for nearly five hours [7]. In 2006, a hacker penetrated a water filtering plant

in Pennsylvania (USA) and planted malicious software capable of affecting the

plants water treatment operations [8]. In 2009, cyberspies have penetrated the

U.S. electrical grid and left behind software programs that could be used to

disrupt the system [9]. The most sophisticated malware Stuxnet installs a mali-

cious program replacing the PLCs original file in a manner undetectable by the

PC operator [10]. Stuxnet was discovered in Iran in June 2010 targeting the

PLCs connected to a nuclear centrifuge used for enriching uranium. The speed

fluctuations could cause the centrifuge to fly apart and to be destroyed[11].

The diversity of cyberattacks and the complexity of the studied systems

make the role of traditional Intrusion Detection Systems (IDS) more difficult.

Traditional IDS try to match signatures of known cyberattacks with network

traffic, but they cannot detect new types of cyberattacks not existing in their

databases [12]. Gross et al. proposed in [13] a mechanism for collaborative

intrusion detection using a centralized server to dispatch activities coming from

suspicious IP addresses. However, this approach do not provide any kind of

specific technique for identifying high level and complex cyberattacks. Carano

et al. presented in [14] the concept of critical state analysis for the detection of

a particular type of cyberattacks against a given industrial installation. They

emulated in their laboratory the Boiling Water Reactor Scenario and used the

concept of “critical state proximity” to predict whether the system is head-

ing to a dangerous state. This approach focuses on the restrictive assumption

that the attacker interferes with the state of the installation forcing a transi-

tion from a safe state to a critical one. Morris et al. investigate in [15] [16]

the vulnerabilities of functional control systems. They elaborated in the Mis-

sissippi State University Laboratory a SCADA testbed including commercial

hardware and software that control physical processes such as a gas pipeline,

an industrial blower, a smart grid transmission control system, a raised wa-

ter tower and a factory conveyor belt. False commands and responses were
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injected into the SCADA network in order to investigate cybersecurity vulner-

abilities on functional control systems. Cyberattacks studied in their testbed

include command injection attack, response injection attack and denial of ser-

vice (DOS) attack. The diversity of these types of cyberattacks restricts the

use of parametric model-based approach, and highlights the potential role of

non-parametric model-based methods in detecting intrusions.

Statistical machine learning, kernel methods and classification techniques

have been widely used in the past few years in the data mining field to dis-

cover hidden regularities in large volumes of data [17]. Machine learning and

classification techniques adapt quickly to different types of data, and they pro-

vide an elegant way to learn a nonlinear system without the need of an exact

physical model. In industrial systems, the majority of the data designates the

normal functional mode, and it is nearly impossible to acquire data related to

the malfunctioning or critical states [18]. For this reason, the role of one-class

classification has been growing in detecting machine faults and intrusions, es-

pecially in critical infrastructures and industrials systems. To the best of our

knowledge, machine learning has not been investigated for SCADA systems.

The main problem involved with using radial basis functions in machine

learning is the choice of the bandwidth parameter σ of the kernel. Haykin

proposed in [19] a heuristic for computing σ according to the spread of the

centers in neural networks. However, this approach is not applicable in the

classification methods since the number of support vectors is not known in

advance. Shi et al. set in [20] the value of σ between 10 to 20 percent of the

total range of the maximum distance between training samples, but this range

works on some cases in image segmentation only. Soares et al. proposed in [21]

a grid-search of 11 values for σ following a geometric series of factor 4. However,

this cross-validation technique remains the most expensive in time consumption

and does not always lead to the optimum choice of σ in classification problems.

Cherkassky et al. suggested in [22] a more restricted range depending on the

input data and faster than the grid-search, but with poorer results. Evangelista

et al. introduced in [23] the notion of the coefficient of variance in order to find
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the optimal σ, but it did not give the optimal performance on several simulated

data. Recently, Gurram et al. proposed in [24] a two-step iterative heuristic

using a gradient descent algorithm to optimize the bandwidth parameter of

Gaussian RBF kernels. However, the convergence of the algorithm proposed is

not guaranteed and the computational requirements are still important.

This paper investigates the use of Lp-norms in Radial Basis Function ker-

nels for intrusion detection in SCADA systems using one-class classification

algorithms. Two distinct approaches are investigated, the Support Vector Data

Description (SVDD) [25] and Kernel Principal Component Analysis (KPCA)

[26]. In each approach, the description boundary of the normal behavior of the

system is found, and the one-class classifier discriminates the data between nor-

mal or abnormal, and accordingly outliers are detected. The tests are conducted

on simulated data, and on the Gas Pipeline testbed real data from the Missis-

sippi State University SCADA Laboratory [16]. We also propose a heuristic for

the optimization of the bandwidth parameter in RBF kernels. The remainder

of this paper is organized as follows. Section 2 provides an overview on kernels,

delineates the RBF kernels used in the simulations, and proposes a heuristic

for the parameter optimization problem. Section 3 outlines kernel methods for

one-class classification, namely the SVDD and the KPCA. Section 4 describes

the gas pipeline testbed, the results on simulated data as well as on the gas

pipeline data. Section 5 provides conclusion and future works.

2 Kernel methods

Machine learning techniques have been well developed for linear case problems,

while real world data analysis problems require, most of the time, nonlinear

methods for detecting patterns and interdependencies between the data [17]

[27]. Kernel methods have become very popular in the past few years since they

provide a powerful way for detecting nonlinear relations using linear algorithms

in the feature space [28] [29]. An example of the feature mapping using a

Gaussian kernel is illustrated in figure 1, where the input data embedded in the
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feature space lay on a sphere with radius equals to 1. The mapping is applied

in such a way that only the pairwise inner product between the embedded data

is needed. This inner product is computed directly from the input data using a

kernel function.
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Figure 1: The feature mapping into the inner product feature space using a

Gaussian kernel. The embedded data in the feature space lay on a sphere with

radius equals to 1.

A kernel function k is a function that for all xi,xj ∈ X satisfies

k(xi,xj) = 〈φ(xi), φ(xj)〉,

where φ is the mapping from a nonempty input domain X into a feature space

H:

φ : xi ∈ X → φ(xi) ∈ H.

Kernel methods use positive definite kernel functions for the mapping into a

high dimensional feature space. A function k is called positive definite kernel

if and only if it is symmetric, that is k(xi,xj) = k(xj ,xi) for any two samples

xi,xj ∈ X , and positive definite , that is :

n∑

i=1

n∑

j=1

cicjk(xi,xj) ≥ 0,
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for any choice of n objects x1, · · · ,xn ∈ X , and any choice of real numbers

c1, · · · , cn ∈ R. The kernel matrix constructed on x1, · · · ,xn ∈ X is a n x n

matrix K whose entries are computed as Kij = k(xi,xj). The kernel matrix

contains all the information needed to compute the pairwise distances within

the dataset, and plays an important role in the learning algorithms.

The feature space is an inner product Hilbert Space that is complete and

separable, and satisfies the symmetry, the bilinearity and the positive definite-

ness conditions. The feature space H is a set of points that are in fact functions

taking the following form:

H =
{ l∑

i=1

αik(xi, ·), xi ∈ X , αi ∈ R, i = 1, · · · , l
}
,

where the · indicates the position of the argument of the function. Let f, g ∈ H
be given by

f(x) =

l∑

i=1

αik(xi,x) and g(x) =

n∑

j=1

βjk(xj ,x),

then the inner product on H is constructed as follows:

〈f, g〉 =
l∑

i=1

n∑

j=1

αiβjk(xi,xj) =
l∑

i=1

αig(xi) =
n∑

j=1

βjf(xj), (1)

where xi,xj ∈ X , αi, βj ∈ R, l, n ∈ N , and the second and the third

equalities come from the definition of f and g. Taking g = k(x, ·) and computing

the the inner product on H between f and g using equation (1) gives us the

following property:

〈f, k(x, ·)〉 =
l∑

i=1

αik(xi,x) = f(x).

This property is know as the reproducing property of the kernel. Therefore, the

feature space H corresponding to the kernel function k satisfying the positive

definite property will be referred to as its Reproducing Kernel Hilbert Space
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(RKHS). In fact, k satisfies the positive definite property since:

l∑

i,j=1

αiαjk(xi,xj) =

l∑

i,j=1

αiαj〈k(xi, ·), k(xj , ·)〉H

=

〈
l∑

i=1

αik(xi, ·),
l∑

j=1

αjk(xj , ·)
〉

H

=

∥∥∥∥∥

l∑

i=1

αik(xi, ·)
∥∥∥∥∥

2

H

≥ 0,

where ‖ · ‖H represents the corresponding distance in the feature space H. The

advantage of using such a kernel is that it allows to construct classification

algorithms in inner product spaces without computing the coordinates of the

data in that space, and therefore without any explicit knowledge of the mapping

function φ. This key idea is known as the kernel trick, for it can be used

to transform linear algorithms expressed only in terms of inner products into

nonlinear ones.

The first kernel investigated in this paper is the Gaussian kernel, since it

is the most common and suitable kernel for one-class classification problems

[30][31]. The Gaussian kernel is given by the following expression:

K(xi,xj) = exp

(
− ‖xi − xj‖2

2s2

)
,

where xi and xj are two input samples, ‖ · ‖ represents the Euclidean distance

between the samples in the input space, and the free parameter to be optimized

s is the bandwidth of the kernel. The second RBF kernel adopted in this paper

is the exponential kernel that follows a Laplace distribution:

K(xi,xj) = exp

(
− ‖xi − xj‖

b

)
,

where b is a scale parameter depending on the standard deviation σ:

σ =
√
2b2 −→ b =

σ√
2
.

The bandwidth parameter should be chosen wisely to obtain the best descrip-

tion that fits correctly the data and avoids overfitting. The proposed heuristic
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for the optimization of the bandwidth parameter is detailed in the next subsec-

tion. Since we are working on industrial processes, the value of each variable

is important to evaluate the criticality of the system, and it is very essential to

predict whether the process is leading to a critical state. Therefore, we need

more adapted kernels that treat simultaneous small changes in several features

as much important as large variations in a single one. We propose to replace the

Euclidean norm in these RBF kernels with other norms in order to study the

effects of these norms on the decision function of the classifiers. For instance,

the City-block distance or l1-norm that measures how close are the samples in

each direction of the input space is given by:

d(xi,xj) =
∑

m

|xim − yim|.

Figure 2 illustrates the variation in the behavior of different norms, where p

takes one the values 0.75, 1, 1.25, 1.5, 1.75, 2 and infinite. Each color represents

equidistant contours with reference to the origin O. It is obvious from this figure

that each norm operates differently on simultaneous variation of multiple feature

values. If we consider the l2-norm (euclidean distance) for example, a large

variation in the value of feature 2 has a much greater effect than simultaneous

variation of feature 1 and feature 2; The samples B and C are equidistant from

the origin O, whereas A is much further. However, for the l1-norm (City-block

distance), C and D are equidistant and much closer than B, and a simultaneous

small change in several features is as important as large variation in a single

one. Therefore, the norms with a small value of p are particularly sensitive

on simultaneous variation of multiple feature, while the ones with higher p are

more sensitive to large variations in any single feature.

3 One-class classification

In multi-class classification problems, the decision boundary of the classifier is

supported by the presence of samples from each class, and the multi-class algo-

rithms are designed to classify unknown samples into one of several pre-defined
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Figure 2: the City-block distance kernel (bold lines) is particularly sensitive

with simultaneous small changes in several features (sample B), whereas the

Gaussian kernel (dashed lines) is more sensitive to large variations in any single

feature (sample A).

classes [18]. However, when it comes to industrial processes and detecting ma-

chine faults and intrusions, the data related to the malfunctioning modes are

nearly impossible to acquire. This is the reason why researchers have been de-

veloping in the last few years one-class classification algorithms for novelty de-

tection. One-class classification methods define a description boundary around

the positive data (normal data) in a way to accept as many samples as possible

from the positive class, and to minimize the chance of accepting negative sam-

ples (outliers). One-class classification algorithms are applied on training data

in the feature space, and a decision function tests new samples to classify them
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as normal data or outliers.

3.1 Support Vector Data Description

Support Vector Data Description (SVDD) was introduced by Tax et al. [25]

in order to get a good description around a training dataset. Tax made this

method more robust against outliers when he included negative examples(data

that should be rejected) in the training set [32]. SVDD computes a spherically

shaped decision boundary with minimum radius enclosing most of the training

data. Samples that lay outside this description are considered outliers, and they

should be rejected.

Given a training dataset xi , i ∈ {1, . . . , N} in a p-dimensional space, the

SVDD estimates the hypersphere with minimum radius that encompasses all

data in the feature space H. The hypersphere is characterized by its center a

and its radius R > 0, and we minimize its volume by minimizing R2. To avoid

a large description that does not represent the data very well, the presence

of outliers in the training set is allowed, and the slack variables ξi ≥ 0 are

introduced to penalize the excluded samples. This boils down to the following

constrained minimization problem:

min
a,R,ξi

R2 +
1

νN

N∑

i=1

ξi (2)

subject to

‖φ(xi)− a‖2H ≤ R2 + ξi and ξi ≥ 0 ∀i = 1, ..., N (3)

The predefined parameter ν regulates the trade-off between the volume of the

hypersphere and the number of outliers. ν ∈ (0, 1) represents an upper bound

on the fraction of outliers and a lower bound on the fraction of support vectors

(the support vectors refer to the data on and outside the boundary).

The Lagrangian of the above optimization problem is constructed by incor-
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porating the constraints (3) into (2):

L = R2 + C

N∑

i

ξi −
N∑

i

γiξi

−
N∑

i

αi

{
R2 + ξi − (‖ φ(xi) ‖2 −2a · φ(xi)+ ‖ a ‖2)

}
,

where αi ≥ 0 and γi ≥ 0 are the Lagrangian multipliers. The partial derivatives

of the Lagrangian with respect to R, ξi and a give the following relations:

∂L

∂R
= 0 −→

N∑

i

αi = 1

∂L

∂ξi
= 0 −→ 0 ≤ αi ≤

1

νN

∂L

∂a
= 0 −→ a =

∑N

i αiφ(xi)∑N

i αi

=
N∑

i

αiφ(xi)

Incorporating these relations into the Lagrangian gives us the following objective

functional to be maximized with respect to αi:

L =
N∑

i=1

αiK(xi,xi)−
N∑

i,j=1

αiαjK(xi,xj), (4)

subject to 0 ≤ αi ≤ 1/νN . The value of αi depends on whether the constraint

‖φ(xi) − a‖2
H

≤ R2 + ξi is satisfied by the corresponding sample xi. We can

encounter one of the following three cases:

‖φ(xi)− a‖2H < R2 ⇐⇒ αi = 0, γi = 0

‖φ(xi)− a‖2H = R2 ⇐⇒ 0 <αi <
1

νN
, γi = 0

‖φ(xi)− a‖2H > R2 ⇐⇒ αi =
1

νN
, γi > 0

Samples that lay inside the hypersphere have their corresponding Lagrangian

multiplier αi equal to zero. Furthermore, the partial derivative of the La-

grangian with respect to the center of the hypersphere a shows that a is a

linear combination of the input data, with weight factors αi obtained by opti-

mizing equation (4). Therefore, the only objects needed for the description of
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the boundary are those with their corresponding αi > 0 (samples on and outside

the boundary). These vectors are called the Support Vectors of the description.

The radius of the optimal hypersphere is obtained by calculating the distance

in the feature space H from the center a to any sample φ(xk) on the boundary

(having 0 < αk < 1
νN

):

R2 = ‖φ(xk)− a‖2H

= K(xk,xk)− 2

N∑

i=1

αiK(xk,xi) +

N∑

i,j=1

αiαjK(xi,xj).

In order to determine whether a new test sample z lays within the hypersphere,

we evaluate the distance ‖φ(z) − a‖2
H

between the center a and the mapping

φ(z) in the feature space. The new sample z is accepted and considered as a

normal sample if the distance calculated is smaller than the radius:

‖φ(z)− a‖2H ≤ R2.

Otherwise, an intrusion is detected, z is considered as an outlier and is rejected.

3.2 Kernel Principal Component Analysis

Kernel Principal Component Analysis (KPCA) is a nonlinear application of

PCA in a kernel-defined feature space, where using the kernel K(x,y) = (x ·y)
is equivalent to performing the original PCA [26]. KPCA extracts the principal

components of a dataset by projecting the mapped data onto the subspace

spanned by the most relevant eigenvectors. Hoffmann investigates in [33] the

use of KPCA for one-class classification when he introduces the reconstruction

error as a measure of novelty. This error takes into account the heterogeneous

variance of the distribution of the data in the feature space. The principal

motivation of Hoffmann’s algorithm is to enclose a smaller volume in H than

other one-class algorithms for the same number of enclosed data samples.

Given a training dataset xi , i ∈ {1, . . . , N} in a p-dimensional input space,

the first step in the KPCA algorithm is to find eigenvalues λ > 0 and eigenvec-
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tors v of the covariance matrix C̃ in the feature space H, satisfying:

λv = C̃v.

Each eigenvector v is a linear combination of the mapped data, and takes the

following form:

v =

N∑

i=1

αiφ̃(xi),

where φ̃(xi) is the centered version of φ(xi) in the feature space:

φ̃(xi) = φ(xi)−
1

N

N∑

i=1

φ(xi).

The coefficients αi are given by solving the following eigen decomposition prob-

lem:

Nλα = K̃α,

where the kernel matrix K̃(xi,xj) = 〈φ̃(xi), φ̃(xj)〉 corresponding to φ̃(xi) is

computed as follows:

K̃(xi,xj) = K(xi,xj)−
1

N

N∑

r=1

K(xi,xr)

− 1

N

N∑

r=1

K(xr,xj) +
1

N2

N∑

r,s=1

K(xr,xs).

In fact, this kernel matrix will be used in the optimization problem without the

need to compute directly the covariance matrix C̃.

Let P be the projection operator onto the subspace spanned by the q most

relevant eigenvectors v(1),v(2), · · · ,v(q). The reconstruction error measures the

squared distance between the centered sample φ̃(z) and its projection into the

subspace spanned by the most relevant eigenvectors. The reconstruction error

is computed as follows:

‖φ̃(z)− Pφ̃(z)‖2H = 〈φ̃(z), φ̃(z)〉 − 2〈φ̃(z),Pφ̃(z)〉

+ 〈Pφ̃(z),Pφ̃(z)〉,
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where 〈φ̃(z), φ̃(z)〉 = K̃(z, z). Since the projection operator P is idempotent

(i.e.,P2 = P) and self-adjoint (i.e., 〈Pφ̃(z), φ̃(z′)〉 = 〈φ̃(z),Pφ̃(z′)〉), then the

reconstruction error’s expression is simplified as follows:

‖φ̃(z)− Pφ̃(z)‖2H = K̃(z, z)− 〈Pφ̃(z),Pφ̃(z)〉. (5)

The projection of a mapped sample φ(z) onto the subspace spanned by the q

most relevant eigenvectors is given by the following expression:

Pφ̃(z) =

q∑

l=1

〈φ̃(z),v(l)〉 v(l)

‖v(l)‖ .

Therefore, since the eigenvectors are orthonormal, the right-hand-side of equa-

tion (5) becomes:

〈Pφ̃(z),Pφ̃(z)〉 =
q∑

l=1

〈φ̃(z),v(l)〉2,

where

〈φ̃(z),v(l)〉 =
([

φ(z)− 1

N

N∑

r=1

φ(xr)

]

·
[ N∑

i=1

α
(l)
i φ(xi)−

1

N

N∑

i,r=1

α
(l)
i φ(xr)

])

=

N∑

i=1

αl
i

[
K(z,xi)−

1

N

N∑

r=1

K(xi,xr)

− 1

N

N∑

r=1

K(z,xr) +
1

N2

N∑

r,s=1

K(xr,xs)

]

=

N∑

i=1

α
(l)
i K̃(z,xi).

After evaluating the reconstruction error for the training dataset, an error

threshold is fixed based on the predefined number of outliers and the description

boundary of the normal data is computed. The threshold being fixed, to decide

whether new test samples belong to the normal behavior of the system, the

reconstruction error of each sample is computed. If this error is smaller than

the threshold, the corresponding sample is accepted and treated as a normal

sample. Otherwise, this sample is considered as an outlier and will be rejected.

This is how the reconstruction error defines a novelty measure.
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3.3 Bandwidth parameter optimization

The bandwidth parameter s of RBF kernels plays a crucial role in defining the

description boundary around the training data. s must be chosen in a way

to obtain a tight boundary that fits correctly the data and avoids overfitting.

For instance, a small value of s causes the kernel function K(xi,xj) to be

almost equal to zero for any distinct input samples (i 6= j). In this case, the

Lagrangian in equation (4) is optimized when all the samples become support

objects with αi =
1
N
, and we have overfitting. On the other hand, a large value

of s makes K(xi,xj) to be almost equal to 1, and all the samples become in the

feature space on a hypersphere of radius equals to 1. Consequently, the classifier

underfits the data and we obtain a loose description boundary.

The heuristic proposed in this paper inspired by Haykin [19] avoids all the

time consuming of the other methods exixting in the literature, and leads to the

optimal choice of the parameter s. Since s is related to the spread of the training

dataset, the number of input samples and the fraction of samples considered as

outliers, hence the computation of s should take into consideration all these

factors in order to obtain the optimal bandwidth. Therefore, we propose the

following expression for computing s:

s =
dmax√
2M

,

where dmax refers to the maximal distance between any two samples in the input

space, and M represents the upper bound on the number of outliers among the

training dataset (equivalent to the fraction of rejected samples multiply by the

total number of input data). We note that the type of the distance used in

the kernel function is the same as the distance in this equation, i.e. in the case

of the gaussian kernel we compute the euclidian distance, while in the case of

the proposed City-block kernel we use the city-block distance. This expression

of s ensures that the extreme cases (overfitting and underfitting the data) are

avoided, and the optimization of this parameter is obtained without any time

computational cost.
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Figure 3: Gas pipeline testbed

4 Simulations and results

In this paper, one-class classification algorithms are applied on simulated data

as well as on real data from the Gas pipeline testbed of the Mississippi State

University SCADA Laboratory. This section provides in the first place a de-

scription of the Gas pipeline testbed. The results on simulated and real data

using the proposed kernel and proposed optimization parameter heuristic are

presented afterwards.

4.1 Gas Pipeline Testbed

The gas pipeline testbed illustrated in figure 3 is used to move natural gas or

any other petroleum products to the market. This testbed represents a typical

SCADA system embracing a Master Terminal Unit (MTU), Remote Terminal

Units (RTU) and a Human Machine Interface (HMI) that allows operators

to monitor and control the physical process. The gas pipeline control system

contains an air pump that pumps air into the pipeline, a pressure sensor which

allows pressure visibility at the pipeline and remotely on the HMI, a release

valve and a solenoid release valve to loose air pressure from the pipeline. The
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control scheme includes an automatic and a manual mode. In the automatic

mode, a PID is used to control the pressure in the pipeline, while in the manual

mode the operator can supervise the system and take charge over the pump

state and the two release valves.

Cyber intrusions on the gas pipeline monitoring system can cause a loss

of control of the physical process, and this may lead to huge financial and

physical losses. For this reason, several types of false commands and responses

are injected into the network traffic of the system to make its behavior abnormal,

in order to study the vulnerabilities of the system and their implications on

the controlled process. For instance, the “negative pressure value injection”

returns a negative response of the pressure from the RTU while the pressure

can not be negative in the system, the “fast change response injection” sends

measurements that change very fast opposed to the case of a normal behavior of

the pipeline, the “burst response injection” sends only one value equals to the

maximum pressure limit, the “wave pressure injection” and the “single packet

injection”. The training phase of the classification algorithms is made on the

normal training dataset while the tests were conducted on data containing these

types of cyberattacks.

4.2 Results on simulated data

The proposed City-block kernel and the optimization parameter heuristic are

tested, in the first place, on the ring-line-square data as illustrated in figure 4

[33]. This simulated dataset is very interesting and challenging, since it combines

three different distributions in one training example: a ring, a line and a square.

The upper bound on the fraction of outliers is fixed to 10% in this case, and

the optimal bandwidth parameter s is computed as detailed in the previous

section. The trade-off parameter ν in the SVDD approach is set to ν = 0.1,

while preliminary experiments were conducted and the number of eigenvectors q

in the feature space in KPCA is set to q = 40. The computation of the optimal

s for the Gaussian kernel leads to s = 0.4441, and s = 0.5478 for the City-block
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Figure 4: The Gaussian kernel is used on the ring-line-square data with the

SVDD approach (the image on the top left) and the KPCA (the image on the

top right), while the results with the proposed City-block kernel appear with

the SVDD approach (the image on the bottom left) and the KPCA (the image

on the bottom right).

kernel.

The results shown in figure 4 have two important meanings. First, the

decision boundaries follow the shape of the distribution of the training data in

all the studied cases, which indicates that the proposed heuristic for computing

the bandwidth parameter gives indeed the optimal s. Secondly, the decision

boundaries obtained when using the proposed City-block kernel are more tight

than the boundaries obtained with the Gaussian kernel, and they describe the

variation in the shape of the data with the most appropriate behavior. These

results confirm that using the city-block distance in RBF kernels leads to the
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optimal description of the data, since it is proven to be more sensitive than the

Gaussian kernel on simultaneous variation of multiple features.
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Figure 5: The Gaussian kernel is applied on the gas pipeline data with the

SVDD approach (the image on the top left) and the KPCA (the image on the

top right), while the results with the proposed City-block kernel appear with

the SVDD approach (the image on the bottom left) and the KPCA (the image

on the bottom right). The decision boundary is given by the lines, and the red

samples represent the outliers. The City-block kernel describes the data of the

Gas pipeline in a better way than the Gaussian kernel.

4.3 Results on the Gas pipeline testbed

The allowed pressure range measured by the sensor in the pipeline is from 0 to

20 PSI (pound per square inch), with a margin of 10% which fixes the maximum

accepted pressure to 22 PSI. The pipeline operates in three principal modes; the
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Table 1: The confusion matrix of several types of attacks with the SVDD

approach.

Gaussian SVDD City-block SVDD

Normal Outlier Normal Outlier

Training Normal 99.7 0.3 98.56 1.44

data Outlier 60.3 39.7 16.03 83.97

Slow Normal 99.7 0.3 99.41 0.59

injection Outlier 0.9 99.1 0.47 99.53

Fast Normal 99.35 0.65 98.7 1.3

injection Outlier 11.6 88.4 11.6 88.4

Burst Normal 99.3 0.7 98.61 1.39

injection Outlier 33.9 66.1 26.6 73.4

Single Normal 99.2 0.8 99.2 0.8

injection Outlier 0.78 99.22 0.78 99.22

Wave Normal 99.76 0.24 98.81 1.19

injection Outlier 35.08 64.92 33.3 66.7

first mode is characterized by a very low pressure maintained around 0.1 PSI,

the second mode keeps it around 10 PSI (the accepted range lays between 9 and

11 PSI), while the third mode should maintain the pressure around 20 PSI (the

accepted range is 18 to 22 PSI). The high pressure (greater than 22 PSI) and

the transitional states between different modes are considered as outliers.

Let x(t) be the pressure in the pipeline at instant t. The choice of the

input vectors should be made to draw attention to the fact that the pressure

measurements of two consecutive instants in the normal functioning modes of

the system must be close to each other. Furthermore, the presence of gaps

in the pressure between two consecutive instants may be a strong sign of a

cyberattack. For these reasons, the time series is folded into 2-dimensional

input vectors composed of the pressure at instant t and the difference in the
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Table 2: The confusion matrix of several types of attacks with the KPCA

approach.

Gaussian KPCA City-block KPCA

Normal Outlier Normal Outlier

Training Normal 99.57 0.43 96.63 3.37

data Outlier 63.36 36.64 34.35 65.65

Slow Normal 99.41 0.59 91.95 8.05

injection Outlier 0.95 99.05 0.47 99.53

Fast Normal 98.3 1.7 83.7 16.3

injection Outlier 11.6 88.4 11.6 88.4

Burst Normal 99.3 0.7 90.3 9.7

injection Outlier 27.9 72.1 24.8 75.2

Single Normal 98.37 1.63 88 12

injection Outlier 0.78 99.22 0.78 99.22

Wave Normal 98.8 1.2 88.6 11.4

injection Outlier 35.1 64.9 3.51 96.49

pressure between instants t and t− 1, namely xt = [x(t) x(t)− x(t− 1)].

The results on real Gas pipeline data for the Gaussian and the proposed

City-block kernels are shown in figure 5. The optimal bandwidth parameter is

computed as detailed in the previous section, and the upper bound on the frac-

tion of outliers is fixed at 0.2. As illustrated in figure 5, the decision boundary

in each case encloses the samples accepted as normal data, while outliers are

rejected outside this boundary. Compared to the Gaussian kernel that gives

a description that might be considered a little bit loose, the City-block kernel

leads to a more tight boundary that delineates the variation in the distribution

of the training data with the most appropriate way. The error probabilities of

the different types of cyberattacks studied in this paper are detailed in Tables

1 and 2. The use of the City-block kernel gives a better performance than the
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Gaussian kernel especially when it comes to decreasing the error of the second

type (The outliers that are accepted as normal data). The outliers detected in

the SVDD approach using the City-block kernel for different types of cyberat-

tacks are illustrated in figure 6.

5 Conclusion

The conclusion goes here.
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Figure 6: Detection of outliers for several types of attacks with the SVDD

approach using the proposed City-block kernel. The blue samples refer to the

data accepted as normal data while the red samples are considered as outliers.
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