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ABSTRACT

The one-class classification has been successfully ap-

plied in many communication, signal processing, and ma-

chine learning tasks. This problem, as defined by the one-

class SVM approach, consists in identifying a sphere enclos-

ing all (or the most) of the data. The classical strategy to solve

the problem considers a simultaneous estimation of both the

center and the radius of the sphere. In this paper, we study the

impact of separating the estimation problem. It turns out that

simple one-class classification methods can be easily derived,

by considering a least-squares formulation. The proposed

framework allows us to derive some theoretical results, such

as an upper bound on the probability of false detection. The

relevance of this work is illustrated on well-known datasets.

1. INTRODUCTION

The one-class classification machines has become a very ac-

tive research domain in machine learning [1, 2], providing a

detection rule based on recent advances in learning theory.

In one-class classification, the problem consists in covering a

single target class of samples, represented by a training set,

and separate it from any novel sample not belonging to the

same class, i.e., an outlier sample. It has been successfully

applied in many novelty detection and classification tasks,

including communication network performance [3], wireless

sensor networks [4], forensic science [5], detection of hand-

written digits [6] and objet recognition [7], only to name a

few. Moreover, it has been extended naturally to binary and

multiclass classification tasks, by applying a single one-class

classifier to each class and subsequently combining the deci-

sion rules [8].

Since only a single class is identified, it is essentially a

data domain description or a class density estimation prob-

lem, while it provides a novelty detection rule. Different

methods to solve the one-class problem have been developed,

initiated from the so-called one-class support vector machines

(SVM) [9, 2]. The one-class classification task consists in

identifying a sphere of minimum volume that englobes all (or

most of) the training data, by estimating jointly its center and
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its radius. These methods exploit many features from con-

ventional SVM [10], including a nonlinear extension thanks

to the concept of reproducing kernels. They also inherit the

robustness to outliers in the training set, by providing a sparse

solution of the center. This sparse solution explores a small

fraction of the training samples, called support vectors (SVs),

and lying outside or on the sphere.

In one-class SVM as defined in [9, 2], the resulting convex

optimization problem is often solved using a quadratic pro-

gramming technique. Several efforts have been made in order

to derive one-class classification machines with low compu-

tational complexity [11]. In the same sense as least-squares

SVM is derived from the classical SVM method [12, 13],

some attempts have been made to derive from the one-class

SVM a least-squares variant, such as in [14]. However, un-

like the former, the latter do not have a decision function, thus

inappropriate for novelty detection.

In this paper, we propose to solve the one-class problem

by decoupling the estimation of the center and the radius of

the sphere englobing all (or most of) the training samples. In

the same spirit as the classical one-class SVM machines, we

consider a sparse solution with SVs lying outside or on the

sphere. It turns our that the optimal sparse solution can be de-

fined using a least-squares optimization problem, thus leading

to a low computational complexity problem. This framework

allows us to derive some theoretical results. We give an upper

bound on the probability of false detection, i.e., probability

that a new sample is outside the sphere defined by the sparse

solution.

As opposed to the jointly optimization of the center

and radius by the classical one-class SVM approach, our

strategy decouples the estimation problem, thus provides a

sub-optimal solution. Consequently, the proposed approach

should degrade the performance. In practice, we found that

the performance is essentially equivalent to the classical tech-

nique, while operating a dramatic speed-up. This is illustrated

on experiments from a well-known benchmark for one-class

machines [11].

The rest of the paper is organized as follows. Section 2

outlines the classical one-class SVM. We describe our ap-

proach in Section 3, and derive theoretical results in Section



4. Section 5 illustrates the relevance of our approach on real

datasets. Conclusion and further directions are given in Sec-

tion 6.

2. CLASSICAL ONE-CLASS SVM

Thanks to the concept of reproducing kernels [15], a (pos-

itive semi-definite) kernel function κ(·, ·) defines a nonlin-

ear transformation Φ(·) of the input space into some feature

space. A sphere defined in the latter corresponds (is pre-

imaged [16]) to a nonlinear characteristics in the input space.

It turns our that only the inner product is often required, which

can be evaluated using a kernel function, 〈Φ(xi),Φ(xj)〉 =
κ(xi,xj) for any xi,xj from the input space X .

The one-class SVM was initially derived in [2] for the

estimation of the support of a distribution with the ν-SVM,

and in [9] for novelty detection with the so-called “support

vector data description”. The principle idea is to find a sphere,

of minimum volume, containing all the training samples. This

sphere, described by its center c and its radius r, is obtained

by solving the constrained optimization problem

min
r,c

r2

subject to ‖Φ(xi)− c‖2 ≤ r2 for i = 1, 2, . . . , n

While the above constraint may be too restrictive, one

may tolerate a small fraction of the samples to be outside the

sphere. This yields robustness, in the sense that it is less sen-

sitive to the presence of outliers in the training dataset. For

this purpose, let ν be a positive parameter that specifies the

tradeoff between the sphere volume and the number of out-

liers. Then the problem becomes the estimation of c, r, and a

set of non-negative slack variables ζ1, ζ2, . . . , ζn:

min
r,c,ζ

r2 +
1

νn

n
∑

i=1

ζi

subject to ‖Φ(xi)− c‖2 ≤ r2 + ζi for all i = 1, 2, . . . , n

By introducing the Karush-Kuhn-Tucker (KKT) optimality

conditions, we get

c =

n
∑

i=1

αiΦ(xi), (1)

where the αi’s are the solution to the optimization problem:

max
α

n
∑

i=1

αiκ(xi,xi)−
n
∑

i,j=1

αiαjκ(xi,xj)

subject to

n
∑

i=1

αi = 1 and 0 ≤ αi ≤
1

νn
for all i = 1, 2, . . . , n.

(2)

In accordance with the KKT conditions, each sample xi can

be classified into three categories: αi = 0 corresponds to a

sample lying inside the sphere, samples with 0 < αi <
1

νn
lie

on the sphere boundary, and samples with αi =
1

νn
lie outside

the sphere, i.e., are outliers. The samples with non-zero αi

are called support vectors (SVs) since they are sufficient to

describe the center as defined in expression (4). In practice,

only a very small fraction of the data are SV. Let Isv be the

set of indices associated to SV, namely

{

αi 6= 0 if i ∈ Isv;
αi = 0 otherwise.

Finally, the optimal radius is obtained from any SV lying

on the boundary, namely any xi with 0 < αi <
1

νn
, since in

this case ‖Φ(xi)− c‖ = r. This is equivalent to

r = min
i∈Isv

‖Φ(xi)− c‖.

Therefore, the decision rule that any new sample x is not an

outlier is given as ‖Φ(x) − c‖ < r, where the distance is

computed by using

‖Φ(x)−c‖2=
∑

i,j∈Isv

αiαjκ(xi,xj)−2
∑

i∈Isv

αiκ(xi,x)+κ(x,x).

(3)

3. SIMPLE ONE-CLASS METHODS

Back to basics, the center (or empirical first moment) of a set

of samples is defined by

cn =
1

n

n
∑

i=1

Φ(xi), (4)

and the radius of the sphere englobing all (or most of ) the

samples can be easily considered, where the distance is eval-

uated using (3) where αi = 1/n for all i = 1, 2, . . . , n and

Isv = {1, 2, . . . , n}. While the sphere defined by the above

full-model is extremely sensitive to outliers, one may consider

a sparse solution by incorporating a small number of relevant

samples in the model. This is essentially the spirit of the clas-

sical one-class SVM, which estimates jointly the center and

the radius, by identifying the SVs. Our approach towards a

sparse solution is based on three steps:

• Determine the full-model center from (4);

• Identify the SVs as the farthest samples from the center;

• Estimate accordingly the sparse model parameters.

3.1. Sparsification rule

The classical one-class SVM method provides a sparse model

for the center, where only samples outside or lying on the

sphere are SVs. Inspired by this result, we consider in our

approach the distance criterion to identify this subset.



The set of SVs can be identified by considering the dis-

tance of each sample to the center, namely

I = argmax
k∈I

‖Φ(xk)− cn‖2

= argmax
k∈I

−2

n
∑

i=1

κ(xi,xk) + nκ(xk,xk),

where the number of SVs is fixed in advance. Once the set

{xi | i ∈ I} is determined, the radius is given as

r = min
i∈I

‖Φ(xi)− cI‖,

where cI is the sparse model of the center defined by

cI =
∑

i∈I

αiΦ(xi), (5)

the coefficients α1, α2, . . . , αn being estimated as follows.

3.2. Sparse formulation of the center

Consider the error of approximating cn with the sparse model

cI , ‖cn − cI‖, which indicates the wellness of such approx-

imation using a small subset of the training data. The coeffi-

cients in (5) are estimated by minimizing this error, with

α = arg min
α1,...,αn

∥

∥

∥

1

n

n
∑

i=1

Φ(xi)−
∑

i∈I

αiΦ(xi)
∥

∥

∥

2

, (6)

where α is a column vector of the optimal coefficients αk’s

for k ∈ I. Taking the derivative of this cost function with re-

spect to each αk, namely −2
〈

Φ(xk), cn −
∑

i∈I
αiΦ(xi)

〉

,

and setting it to zero, we get

1

n

n
∑

i=1

κ(xk,xi) =
∑

i∈I

αiκ(xk,xi), for every k ∈ I.

In matrix form, we obtain

α = K
−1

κ, (7)

whereK is the kernel matrix, with entries κ(xi,xj) for i, j ∈
I and κ is a column vector with entries 1

n

∑n

i=1
κ(xk,xi)

for k ∈ I. To make this problem well-posed in practice,

we include a regularization parameter ν, namely α = (K +
νI)−1

κ, where I is the identity matrix of appropriate size.

The error of approximating the center with the above solution

is

‖cn − cI‖2 = ‖cn‖2 − 2α⊤
κ+α

⊤
Kα

=
1

n2

n
∑

i,j=1

κ(xi,xj)− κ
⊤
K

−1
κ. (8)

3.3. Constrained sparse formulation of the center

While the box constraint on the coefficients requires advanced

optimization techniques, it is easy to satisfy the equality con-

straint (see (2)). The constrained optimization problem be-

comes

αeq = arg min
α1...,αn

∥

∥

∥

1

n

n
∑

i=1

Φ(xi)−
∑

i∈I

αiΦ(xi)
∥

∥

∥

2

subject to 1
⊤
αeq = 1,

where 1 is a column vector of 1’s. By using the Lagrangian

multipliers, we obtain

αeq = α− K
−1

1(1⊤
α− 1)

1
⊤
K

−1
1

, (9)

where α is the unconstrained solution, as given in (7). One

may also include a regularization term, as above.

4. SOME THEORETICAL RESULTS

Independently of the algorithm, one is considering a set of

samples in order to estimate the true expectation. Let

c∞ =

∫

X

Φ(x) dP (x)

be the true expectation, where P (x) is the probability dis-

tribution generating the samples x1,x2, . . . ,xn. From these

samples, one can give an estimate of c∞ by using the em-

pirical first moment cn, as defined in expression (4). The

accuracy of such approximation is

ǫ0 = ‖cn − c∞‖.

Based on the Hoeffding’s inequality, it is shown in [17] (see

also [18]) that, with probability at least 1− δ over the choice

of a random set of n samples, we have

nǫ20 ≤ sup
x∈X

κ(x,x)
(

2 +
√
−2 ln δ

)2

.

By the symmetry of the i.i.d assumption, we can bound

the probability that a new sample x, generated from the same

probability distribution, is beyond the boundary defined by

a one-class classification method, as given by the following

proposition:

Proposition 1. Consider the sphere centered on cI with ra-

dius maxi=1,...,n ‖Φ(xi) − cI‖ + 2ǫ0 + 2‖cn − cI‖. Then,

with probability at least 1− δ over the choice of a random set

of n samples, we can bound the probability that a new sample

x is outside this sphere, with

P
(

‖Φ(x)− cI‖ > max
i=1,...,n

‖Φ(xi)− cI‖+ 2ǫ0 + 2‖cn − cI‖
)

≤ 1

n+ 1
.



Proof. To show this, we consider ‖Φ(x)− cI‖ and apply the

triangle inequality twice, we get

‖Φ(x)− cI‖ ≤ ‖Φ(x)− cn‖+ ‖cn − cI‖
≤ ‖Φ(x)− c∞‖+ ǫ0 + ‖cn − cI‖,

where the first inequality follows from approximating the full-

model center by a subset of samples, while the second in-

equality from estimating the expected center by a finite set of

n samples. Equivalently, we have for any xi:

‖Φ(xi)− cI‖ ≥ ‖Φ(xi)− cn‖ − ‖cn − cI‖
≥ ‖Φ(xi)− c∞‖ − ǫ0 − ‖cn − cI‖.

Therefore, we get

P
(

‖Φ(x)− cI‖ > max
i=1,...,n

‖Φ(xi)− cI‖+ 2ǫ0 + 2‖cn − cI‖
)

≤ P
(

‖Φ(x)− c∞‖ > max
i=1,...,n

‖Φ(xi)− c∞‖
)

≤ 1

n+ 1

where the first inequality follows from the above inequalities,

and the last inequality is due to the symmetry of the i.i.d as-

sumption, considering n + 1 samples drawn from the same

distribution.

As a special case of this proposition, consider the full-

model for the empirical center, namely I = {1, 2, . . . , n}. In

this case we get the relation given in [17, Chapter 5]:

P
(

‖Φ(x)− cn‖ > max
i=1,...,n

‖Φ(xi)− cn‖+ 2ǫ0
)

≤ 1

n+ 1
.

We can extend this result to the solution defined by con-

sidering that the samples defined by indices I are outliers,

thus not inside the sphere. The following proposition can be

easily proven using the same steps as in the proof of Proposi-

tion 1.

Proposition 2. Consider the same setting as in Proposition

1, where the indices in I define the outliers with |I| the num-

ber of outliers. Then, with probability at least 1 − δ over the

choice of a random set of n samples, we can bound the prob-

ability that a new sample x is outside the sphere excluding

outliers, with

P
(

‖Φ(x)− cI‖ > min
i∈I

‖Φ(xi)− cI‖+ 2ǫ0 + 2‖cn − cI‖
)

≤ |I|
n+ 1

.

It is worth noting that in both propositions, the error ‖cn−
cI‖ is minimized by our approach, as given by (8).

5. EXPERIMENTS

Since there are few benchmark datasets for one-class clas-

sification methods, multiclass tasks are often considered. A

multiclass classification task can be tackled by using one-

class machines: each class is defined by a one-class classifier,

and subsequently we get the decision rule by combining these

classifiers. In practice, the model parameters are estimated by

considering a subset of the target class (ntrain samples), and

tested over the remaining samples (ntest), some from the tar-

get class and all the samples from the other classes.

To illustrate the relevance of the proposed approach, we

have tested the proposed methods on real datasets well-known

in the literature of one-class machines [19]: the IRIS dataset

with 150 samples in 3 classes and 4 features, and WINE with

178 samples in 3 classes and 13 features. These datasets are

available from the UCI machine learning repository. For ex-

periments on IRIS data, we used only third and fourth fea-

tures, as often investigated.

The Gaussian kernel was applied, with κ(xi,xj) =
exp(‖xi − xj‖2/2σ2). To estimate the classification error,

a ten-fold cross-validation was used, with parameters opti-

mized by a grid search over ν ∈ {2−5; 2−4; · · · ; 24; 25} and

σ ∈ {2−5; 2−4; · · · ; 24; 25}. In order to provide comparable

results, the number of SVs was fixed for all methods, by con-

sidering the optimal configuration for the classical one-class

SVM. Table (4) gives the results in terms of classification er-

ror for each of the proposed methods, and compared to the

classical one-class SVM. We also included the ratio of com-

mon SVs between the latter and each of the proposed meth-

ods, as well as the mean values. The computational cost of

these machines, using the best configuration, are illustrated

in terms of CPU time, as estimated on a 64-bit Matlab run-

ning on a Mackbook Pro with a 2.53 GHz Intel Core 2 Duo

processor and 4 GB RAM.

6. CONCLUSION

In this paper, we studied the problem of one-class classifi-

cation. By offering three one-class classification methods,

we have shown that we can achieve a classification one-class

while minimizing the classification error and especially with

less computing time. The relevance of our approach is il-

lustrated by experiments on well-known datasets. In future

works, we study an online strategy for one-class classifica-

tion, as well as other sparsification rules such as the coherence

criterion.
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