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Abstracte—Wireless sensor networks are networks composed
of a large number of distributed sensors, connected via wireless
links. This paper deals with the problem of localization in wireless
sensor networks. Such a problem becomes challenging in indoor
environments, where signals of Global Positioning Systems are no
more reliable. In this paper, the localization problem is defined
using connectivity measurements. The proposed technique con-
sists thus of estimating unknown sensors positions using known
position information of neighboring sensors. The estimation is
then performed using polar intervals. The estimated positions are
thus two-dimensional intervals defined in some polar coordinates
system. Using intervals, the proposed approach performs an outer
estimation of the solution, leading to estimates covering for sure
the actual positions of the sensors.

Index Terms—connectivity measurements, localization prob-
lem, polar intervals, wireless sensor network.

I. INTRODUCTION

In recent years, advances in electronics and wireless com-
munication have produced a new technological innovation,
the Wireless Sensor Networks (WSNs). These networks are
composed of a large number of embedded devices having
sensing, computing and communication capabilities [1], [2].
Due to their wireless links, sensors in WSNs do not have
a fixed infrastructure and thus they are able to move [3],
[4]. Their mobility could be either passive or controlled. In
the case of passive mobility, sensors change positions in an
uncontrollable manner, and thus they need to be localized
regularly, whereas in the case of controlled mobility, sensors
are robots whose mobility could be managed to improve the
accuracy of the sensed data in the network [5], [6].

WSNs have emerged as a feasible solution for a wide range
of applications in military, environment monitoring, health-
care, etc [7], [8]. In almost all applications, the knowledge
of sensors locations is essential, since sensed data are directly
related to the place where measurements are made. This paper
considers the problem of sensors localization in uncontrolled
mobility sensor networks. The self-evident solution to such a
problem consists of using Global Positioning Systems (GPS)
[9]. However, this solution is impractical for indoor local-
ization since in indoor environments, the reception of GPS
signals is no more reliable. The alternative solution consists
of considering two types of sensors, anchors and non-anchor
nodes. Anchors are sensors aware of their locations, whereas
non-anchor nodes, or simply nodes, have unknown locations

and thus they need to be localized regularly. Anchors are
generally static, having pre-defined fixed positions, or mobile
but tracked or moved by the user.

Many algorithms have been proposed for indoor localization
using anchors. They are mainly based on estimating the dis-
tances separating the nodes from the anchors, using Time Of
Arrival (TOA) [10], Time Difference Of Arrival (TDOA) [11],
Angle Of Arrival (AOA) [12], or Received Signal Strength
Indicator (RSSI) [13]. TOA-based methods measure the travel
times of signals exchanged between the sensors, whereas
TDOA and AOA methods measure the difference of arrival
times or the angles at reception of exchanged signals. While an
error in synchronization can significantly falsify the estimation
using TOA methods, TDOA and AOA methods achieve high
estimation accuracy but need extra hardware. Compared to
other methods, the RSSI methods are simpler and inexpensive.
They are based on the attenuation of signal strengths with the
increase of the traveled distance.

Localization using RSSI-based methods is challenging be-
cause of reflection, diffraction and scattering of signals. How-
ever, it has drawn considerable attention due to its low-
complexity in calculation and a very low cost of imple-
mentation. For instance, in [14], [15], Monte-Carlo-based
techniques are proposed for sensors localization using RSSI
information. In [16], authors propose a statistical method
for distance estimation also based on RSSI. A Sigma-Point
Kalman Smoothers-based method is proposed for RSSI-based
localization in [17]. In [18], [19], the variational filter and
the quantized variational filter are used for sensors radio-
localization. In a different scenario, interval-based methods
using RSSI measurements are proposed in [20], [21], [6].
Compared to other approaches, these techniques perform an
outer approximation of the solution area, leading to boxes
guaranteed to include the actual locations.

This contribution proposes an original approach for indoor
localization in wireless sensor networks. The proposed ap-
proach is an RSSI-anchor-based method, using connectivity
measurements. In other words, measurements are proximity
information setting whether the considered node is within
the sensing range of other anchors or not. The localization
problem is solved using polar intervals. Based on interval
analysis [22], [21], the method aims at computing bounds on
sensors coordinates, in the Polar Coordinate System (PCS).



The estimated positions are partial rings including for sure all
the possible solutions of the problem. Simulation results using
Matlab corroborate the efficiency of the proposed method
compared to other Monte-Carlo-based and interval-based tech-
niques.

The rest of the paper is organized as follows. Section II
introduces the localization problem. Section III describes the
proposed algorithm to solve the problem. Simulation results
are given in Section IV whereas Section V concludes the paper.

II. PROBLEM STATEMENT

Consider a network composed of IV, anchors and N, nodes
and let a;(t), i € {1,..., Ny}, and u;(t), j € {1,...,N,}, be
the positions of these sensors respectively. The aim of the
method is to estimate all w;(¢) positions using a;(t) informa-
tion. In order to reduce the communication costs, the proposed
method assumes that nodes exchange information only with
anchors. For this reason and without loss of generality, only
one node u(t) is considered in this paper and the index j is
withdrawn. Assume that all sensors are deployed in a two-
dimensional square area, then their coordinates in the PCS are
given by a,(t) = (pi(t), 6,(1)) and u(t) = (p(t), 6(1)), where
p denotes the distance from the origin to the sensor and 6
denotes the angle measured anticlockwise from the x-axis to
the line joining the sensor to the origin. The origin of the
PCS, called also pole, is assumed to be at the low-left corner
of the surveillance area. Then 6;(t) € [0,%], 6(t) € [0, 5],
pi(t) € [0, pmax] and p(t) € [0, pmax), Where ppax is the
length of the diagonal of the surveillance area.

The proposed method uses RSSI information to localize the
mobile node. Indeed, at each time step, every anchor broad-
casts signals in the network with the same initial power. Ac-
cording to the Okumura-Hata model [23], [24], the strengths
of the signals decrease monotonically with the increase of their
traveled distances as follows,

&i(t) = o (%)a ,

where &;(t) is the strength of the signal emitted by the anchor
1 and received by the mobile node at time ¢, & is the strength
measured at a reference distance d from the anchor ¢, d;(t) =
||w(t) — a;(t)|| is the Euclidian distance between the anchor @
and the node at time ¢ and « is the path loss exponent.

In practice, the RSSI of a signal could be modified due to
the reflection, the diffraction or the scattering of the signal.
Moreover the values of £ and & may vary from an anchor
to the other. This may lead to inaccurate distances estimates.
For this reason, the proposed method uses connectivity infor-
mation, instead of using distances estimates. Here, received
strength values are only used to be compared to a threshold
&, corresponding to the sensing range r of the sensors. If
& (t) = &, the anchor ¢ is assumed to be within the sensing
range of the node at time ¢. Otherwise, the anchor ¢ is assumed
to be too far and its information is not used. Connectivity mea-

(1)

Coordinates in the PCS.

Fig. 1.

surements are then one-bit information generated as follows,

Z/i(t) _ { 1 if &(t) > g'r

0 otherwise , i €{1,...., Na}.

2
Let I(t) be the set of indices at time ¢ of all anchors having
yi(t) = 1. The anchors denoted in I(t) are assumed to be
within the sensing range of the node, and thus they are located
at distances from the node less than r,

Vi€ I(t), di(t) <. (3)
One could obtain the distance d;(t) between the anchor 4
and the node u by considering the triangle having the origin
O, a;(t) and wu(t) as vertices, as shown in Fig. 1. The
lengths of the sides Ow(t) and Oa;(t) are given by p(¢)
and p; (t) respectively, whereas d;(t) is the length of the side
u(t)a;(t) in the triangle. d;(t) could then be computed using
the generalized Pythagorean theorem as follows,

di (t) = p*(t) + pi (t) — 2p(t)pi(t) cos (8(t) — 0:(t)) .

with |8(¢) — 6,(t)| being the angle at the vertex O.
The localization problem is then defined in the PCS by the
following constraints,

(4)

PP (8) + P7 (1) = 2p(t)pi(t) cos (B(t) — O;(t)) < 12, i € I(t).

&)
Graphically, the problem at a given time ¢ consists of a set of
disks having r as radii and the anchors i, ¢ € I(t), as centers.
An example of such a problem with three detected anchors
is shown in Fig. 2. The solution of the problem is given by
the overlapping area of all disks, as shown in dark gray in the
plot.

III. POLAR-INTERVAL LOCALIZATION ALGORITHM

Solving the localization problem consists of estimating the
coordinates of the considered node w(t) = (p(t), #(t)) at each
time step, given the following constraints,

P2(1) + 02(t) = 2p(0)pilt) cos (0(1) — 0,(1)) <2, i € 0,
6

where p;(t), 0;(t), for ¢ € I(t), and r are known quantities.
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Fig. 2. An example of a localization problem at a given time step.

A. Description of the method

The solution of the problem is proposed using interval anal-
ysis [22]. Instead of computing a punctual position estimate
at each time step, the method consists of performing an outer
estimation of the solution. In other words, it aims at bounding
the coordinates of the node, in the way to cover all possible
solutions of the problem. The solution is then given by a two-
dimensional interval, denoted by [u](t). Also called polar box,
[u](t) is defined by the cartesian product of two real intervals
[0](t) and [](t), defined over the polar coordinates p(t) and
0(t) respectively,

[u](t) = [pl(t) x [01(t) = [p(t), B()] > [6(2),0()], (7
where p(t) = inf ([p](t)) and p(t) = sup([p](t)) denote
respectively the lower and the higher endpoints of the real
interval [p](t) and 8(t) = inf ([0](¢)) and 8(t) = sup ([0](t))
denote respectively the lower and the higher endpoints of the
real interval [6](¢). Having the localization problem of (6) at
time t, solving the problem consists of finding the minimal
polar box [u](t) including all possible solutions. Starting with
an initial box [u]y, the proposed method aims at minimizing
the widths (7(¢) — p(t)) and (6(¢) — 6(t)) of [p](t) and [6](t)
respectively according to the constraints of (6). The initial
polar box [u]o could be defined by [0, pmax] % [0, 5], since
p(t) € [0, pmax] and 8(t) € [0,%] as shown in Section II.
Graphically, the solution box is a partial ring, having the origin
of the PCS as center and p(t) and p(t) as inner and outer
radii respectively, and defined between the lines starting at the
origin and having §(¢) and 6(t) as angles from the x-axis. The
best solution box corresponding to the problem of Fig. 2 is
given in thick black line in Fig. 3.

B. Proposed algorithm

In order to compute the solution box [u](t) at a given time
t, one should set all available constraints on p(t) and 6(¢)
according to (6). The first general constraints to be set are

o

Fig. 3. Polar box obtained for the localization problem of Fig. 2.

given by the dimensions of the surveillance area,

0<p(t) < pmax  and 0 0(1) < ®)

|3

Moreover, since the cosine of an angle is always less than
1 and p(t) and p;(t) are always positive for ¢ € I(¢), then

(p(t) = pi(t)* < p(£) +p3(t) = 2p(t)pi(t) cos (O(t) — Oi(t)).
Each constraint of (6), for ¢ € I(t), leads hence to the
following constraint,

(p(t) = ps(0))* <12 & pi(t) =1 < p(t) < pult) + 7. (9)

Then, if all constraints over p(t) are combined, one obtains

max <07 max (p;(t) — r)) < p(t) € min <pmax, min (p;(t) + r)) .
eI (t) ieI(t)
(10)
On the other hand,

P2(t) + p2(t) — 2p(t)pi(t) cos (8(¢) — 6,(1)) =
(p(t) = pu(t) cos (B(t) — 0:(1)))* + p2(t) sin® (01(t) — ot

Then each constraint of (6) leads inevitably to the following,

2 ‘inQ — 0, 7-2 7L sin _ 9. T .
03 (t)sin® (8(t) — 0;(t)) < r° & pi(t)g (o(t) OZ(t))Spi(t)

12
If — < 1, for i € I(t), and since (0(t) — 0;(t)) € [~ 5. 5]

2032
where the sine function is monotonically increasing, the pre-
vious constraint leads to

r r
0;(t) — arcsin (—) < O(t) < 0;(t) + arcsin (—) .
) ) =0 =800 PO
(13)
Then, if all constraints over #(¢) are combined, one obtains
max (O, max;er () <9i(t) — arcsin (min (1, ﬁ)))) < 6(t)
< min (%,miniel(t) <9i(t) + arcsin (min 1, ﬁ)))) .

One could then define the first solution box by

] (1) = [0 (0,50 (0)] x 60 (1), 5 (0],
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Fig. 4. First solution box obtained for the localization problem of Fig. 2.

with
P (t) = max (0, max;c () (pi(t) = 7)),
ﬁ(l)(t) min (,Dm"pn mlnze[(t) (:01 (t) + T‘))
%?(t) masx (0, max;e (y) (6:(¢) — arcsin (min (1, (t) ))
3¢ )(t) = min (2,m1nlel(t) 0;(t) + arcsin { min {1, P (t)

Fig. 4 shows in thick black line the first solution box [w]) (¢),
obtained for the localization problem of Fig. 2. It is obvious
that this box is not minimal. It is indeed larger than the
solution box that should be obtained, as illustrated in Fig. 3.
For this reason, one could set more constraints on p(t) and
0(t), with bounds being functions of 6(¢) and p(t) respectively.
Once [u]™M) () is computed, these constraints could be used to
contract it at maximal leading to the final solution box.

On the first hand, constraints of (6) and equation (11) lead
to the following constraints with ¢ € I(¢),

pi(t) cos (6(t) — 6i(1)) — \/"'2 — p7(t)sin? (8(t) — 0:(t)) < p(t)

17
< pi(t) cos (8(t) — 0:(t)) + \/"'2 — p7 (t)sin” (6(t) — 0:(¢)).

On the second hand, constraints of (6) could be reformulated
as follows,
() + 3(t) = 1°

om0

Then,

8;(t) — arccos (%ﬂ%—;r?) < 0(t)
P2 +p7 () —r” (19)

< 8;(t) + arccos (W) .
One could use bounds of #(¢) and (17) to compute new
bounds of p(t) and bounds of p(t) and (19) to compute new
bounds of #(t), which might contract [w]™)(¢). Practically,
in order to contract the polar box [u](!)(¢), the constraints
of (17) and (19) are iterated in the interval framework using

the forward-backward contractor [22]. This contractor iterates

all constraints, while using interval notations, without any

prior order until no contraction is possible. The proposed

algorithm at a given time ¢ is illustrated in Algorithm 1.

Here Ar ([uf(t)) yields the area of the polar box [u](t) =
[p(t). 7(t)) x [6(t).B(t)], given by

(0(t) —0() (7(t)* = p(t)*)

Ar ([u(1)) = e

The polar box obtained at time ¢ using Algorithm 1 would

be at best the box illustrated in Fig. 3, given the problem of
Fig. 2.

(20)

Algorithm 1: Estimation algorithm
Input: r, p;(t) and 0;(t), i € I(t), pmax;
Output: [u](t);
£(1) (t) = max (0, max;e rr) (i (t) —1));
_(1)( ) min (pmaX» mintel(t) (pt( ) + T))

0D () = max (O max;er(q) (0i(t) — arcsin {min (1,

7))
7))

[0 (1), 0

9(1)(t) = min (5, min;er(¢) (0 (t) + arcsin (mln (1
[u] P (t) = [pM ()] % 0]V (1) = [P (£), 5D (1)] x
A0 = Ar ([ (1)):

Aold A(l) 4 1

k=1;

while A*) < A°ld do

Aold — A(k);

for i € I(t) do

’
’
1) .
’

(®)]

B ® = p, ( )cos ([P () = 0:(1);5

[ei]®) =\ /r2 — p2(t) sin2 ([0]®) () — 6:(t));
p]* T (1) = [p] ¥ () N

bnf [bi]®) — ](’“)> ,sup ([bi](k) + [Ci](k)ﬂ;

[h:]*®) = arccos ([p](;;)]();Zﬁ.(i)(i_)ﬁ;i((?)ir );

o * (1) = [0]® () n

0:(1) — sup [hi](’“)) ,0,() + sup ([hi](’“)ﬂ

w0 () = [p (1) x 6] o)
k=k+1;
end
A®) = Ar (] 910);
end
[u](t) = [u]®)(1).

IV. SIMULATIONS

This section illustrates the performances of the proposed
method. For this reason, a single mobile node moving over
100 time steps in a 100m x 100m square area is considered.
Anchors are assumed to be static and uniformly deployed over
the surveillance area. The density of anchors is set to 0.01
anchor per m?, leading to 100 anchors uniformly deployed
over the square area, as shown in Fig. 5. With a 10m circular
sensing range, the node detects at average 3.13 anchors at each
time step. Here connectivity measurements at a given time step
are generated by computing the distances between the mobile
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node and all anchors at this step and then setting to one the
measurement corresponding to the anchor having a distance
to the node less than 10m. All simulations are performed on
an Intel(R) Atom(TM) CPU (1.67GHz, 1.00GB RAM) using
MATLAB 6.1.

A. Illustration of the proposed method

This paragraph shows an illustration of the proposed
method. For this aim, 100 uniformly deployed anchors are
considered and the origin of the PCS is assumed to be at the
low-left corner of the plot at the cartesian position (0, 0). Fig. 5
shows the polar boxes obtained using the proposed method,
called PIL. The plot also shows the estimated positions given
at the centers of the estimated boxes. The computation time
of PIL is equal to 0.0123s at average per time step whereas
the average box area is equal to 78.82m? per box. Let the
estimation error be the average distance between the actual
positions of the node and the estimated positions, then the
estimation error of PIL is equal to 2.21m per time step.
A comparison of PIL to its relaxed version, called PILr, is
then performed. The PILr method is the simplified version
of PIL without the contraction phase, leading to the initial
solution box. The average computation time of PILr is equal
to 0.00624s per time step. The average box area is equal to
79.75m? whereas the estimation area is equal to 2.23m. The
use of the contraction phase in PIL leads thus to a slightly
higher accuracy, at the cost of the increase of the computation
time. The accuracy of both methods varies with the variation
of the number and the distribution of anchors in the network.
Indeed, with a density of anchors of 0.02 anchor per m?, the
average boxes areas obtained with PIL and PILr are equal
to 24.61m? and 26.78m? with computation times of 0.0276s
and 0.00636s respectively. In all cases, PIL yields at least
as much accuracy as PILr, with higher computation time.
In the following, the relaxed version PILr of the method is
considered, since with 100 anchors it leads to almost the same
accuracy as PIL with less computation time.

B. Comparison to an interval-based method

In this section, the proposed method is compared to an
interval-based method using cartesian coordinates [21]. This
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Fig. 6. Estimated boxes obtained using the PILr and the CIL methods.

method, called CIL, yields rectangular boxes estimates cov-
ering all possible solutions. Fig. 6 shows the boxes obtained
using the relaxed version of the method PILr and the CIL
method with a density of anchors of 0.01 anchor per m?. The
average computation times are equal to 0.0064s with PILr
and 0.0136s with CIL per time step. According to the plot,
the boxes of the proposed method are included in the boxes
of CIL at most of the time steps. Fig. 7 shows the ratios of
the boxes areas obtained with the PILr method over the ones
obtained with the CIL method in the top plot and the ratios of
the estimation errors obtained with PILr over the ones obtained
with CIL in the bottom plot. Note that the estimation error
of CIL is equal to the average distance between the actual
positions of the node and the centers of the estimated boxes,
as for PILr. The average ratio of boxes areas is equal to 0.649
whereas the average ratio of estimation errors is equal to 0.762.
Here the proposed method yields more accurate estimates than
the CIL method. The accuracy of both methods is tightly
related to the shape of the solution area, which depends on
the number and the positions of the anchors in the network.
Indeed, assume that the network has 200 anchors randomly
deployed over the surveillance area. Here, the average ratios
of boxes areas and estimation errors PILr over CIL are equal
to 1.045 and 1.096 respectively. One could then propose to
perform both techniques for instance and select at each time
step the box having the smallest area.

C. Comparison to a Monte-Carlo-based method

This section compares the proposed method to a Monte-
Carlo-based method [14]. This method, called MCL, yields
at each time step a fixed number N of positions, called
particles, in the way to cover at best the solution area. The
estimated positions using MCL correspond to the centers of
the computed particles. N is first set to 50. Fig. 8 shows the
estimated particles using MCL as well as the estimated boxes
using PILr. With 50 particles, the computation time of MCL
is equal to 0.385s per time step with an estimation error of
2.762m. Here the estimation error of MCL is equal to the
average distance between the centers of the particles and the
actual positions. Compared to PILr, with a computation time
of 0.0064s and an estimation error of 2.23m, the MCL is
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less accurate with more computation time. It is also more
consuming in terms of memory resources. The performances
of MCL depend on the number of particles to be computed
at each time step. Indeed, with N = 20 for instance, the
computation time of MCL decreases to 0.0794s, at the cost
of the estimation error that increases to 3.585m.

V. CONCLUSION

This paper proposes an original technique for sensors local-
ization in wireless sensor networks. The proposed approach
is an anchor-based method using connectivity measurements.
Based on proximity information, the solution is provided using
polar intervals. An outer approximation of the solution is per-
formed using interval analysis in the polar coordinate system.
Instead of punctual estimates, the proposed method yields
partial rings including for sure all the possible solutions of the
problem. Future works will take advantage of the mobility of
the nodes to refine the obtained estimates. An extension of this
method could also be proposed, with computation performed
in different polar coordinate systems.
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