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ABSTRACT

The autoregressive (AR) model is one of the most used tech-
niques for time series analysis, applied to study stationary as
well as non-stationary processes. However, being a linear
technique, it is not adapted for nonlinear systems. Recently,
we introduced the kernel AR model, a straightforward exten-
sion of the AR model to the nonlinear case. It is based on
the concept of kernel machines, where data are nonlinearly
mapped from the input space to a feature space. The AR
model can thus be applied on the mapped data. Nevertheless,
in order to predict future samples, one needs to go back to the
input space, by solving the pre-image problem. The predic-
tion performance highly depends on the considered pre-image
technique. In this paper, a comparative study of several state-
of-the-art pre-image techniques is conducted for the kernel
AR model, investigating the prediction error with the optimal
model parameters, as well as the computational complexity.
The conformal map approach presents results as good as the
well known fixed-point iterative method, with less computa-
tional time. This is shown on unidimensional and multidi-
mensional chaotic time series.

Index Terms— kernel machines, autoregressive model,
nonlinear models, pre-image problem, prediction

1. INTRODUCTION

Time series analysis and prediction is of an important role in
many domains. One of the most useful technique for time se-
ries analysis is the autoregressive (AR) model. This model
is based on the prediction of future samples using a linear
combination of a (usually small) number of previous sam-
ples. The model parameters include the weights in the linear
expansion and the model order, i.e., the number of previous
samples. Once these parameters estimated, the AR model al-
lows to predict future samples. Owing to linear algebra, the
AR technique for modeling and prediction is easy to compute
and implement. Still, it is based on a linear model, unadapted
to study nonlinear systems.
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In order to provide nonlinear models, one may consider
the concept of kernel machines. It is based on mapping the
data from the input space to a feature space where the data is
assumed linear. Estimating the model parameters in the fea-
ture space can be done using inner products between mapped
data, evaluated by using a kernel function, without the need
to explicit the feature space. This is known as the kernel
trick [1], mostly known by Vapnik’s Support Vector Machines
(SVM) [2]. It allows to derive nonlinear techniques based
on linear ones, essentially without additional computational
cost, as illustrated with kernel principal component analysis
(PCA), kernel Fisher discriminant analysis, and SVM novelty
detection, only to name a few. See [3] for a survey. The con-
cept of the kernel machines have been applied for time series
analysis, for instance with the support vector regression [2],
and the kernel Kalman filter [4]. However, these machines do
not tackle the simplicity of the AR model, resulting into high
computational cost.

To adapt the simplicity of the AR concept for nonlinear
systems, we recently introduced in [5] the so-called kernel AR
model, by combining the flexibility and easiness of both the
AR model and the kernel machines to incorporate nonlinear-
ities. To this end, samples are nonlinearly mapped from the
input space into a high-dimensional feature space. The AR
model parameters are determined by evaluating a kernel func-
tion, without the need to exhibit the nonlinear map. While the
model parameters are evaluated in the feature space, the pre-
dicted future samples need to be estimated back into the input
space, i.e. the space of samples. Thus, a pre-image technique,
mapping from feature space to the input space, is required.
Without a pre-image technique, the kernel AR model fails to
perform a prediction scheme, as illustrated in [6].

The prediction performance of the kernel AR model de-
pends highly on the pre-image technique. Several techniques
have been proposed to solve the ill-posed pre-image problem.
This problem is initially introduced in [7], where a fixed-point
iterative method is proposed. This method, as well as a gradi-
ent descent approach, suffer from numerical instabilities and
local minima. Another pre-image technique has been pro-
posed in [8], where a multidimensional-scaling approach is
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presented, considering the relationship between feature-space
distances and input-space distances. Lately, a more direct
method based on the relationship between inner-products in
both spaces [9]. See [10] for a recent review, with several
applications in signal processing. The latter technique is as
good as the fixed-point iterative one with low computation
time, and does not suffer from any instabilities. In this paper,
we study the influence of these pre-image techniques on the
performance of the kernel AR model for prediction, as well
as an estimation of the computational time.

The rest of the paper is organized as follows: In the next
section, we present the kernel AR model. In Section 3, the
prediction scheme for evaluating the future samples is de-
rived, with several pre-image techniques considered. Section
4 provides a comparative study of these pre-image techniques
on two univariate (Laser and MG30) and two multidimen-
sional time series (Ikeda map and Lorenz attractor).

2. KERNEL AR MODEL

Let us first define the classical AR model, widely used in anal-
ysis of stationary and non-stationary time series. The main
idea behind the AR model is to predict future samples based
on a linear combination of some previous ones. This linear
combination of previous samples is defined by some param-
eters αi for i = 1, 2, . . . , p, where p denotes the order of the
model, i.e., the number of previous samples in the expansion.
Taking for example a time series x1, x2, . . . , xn, an AR model
of order p is defined by

xi =

p∑
j=1

αp−j+1 xi−j + εi, (1)

for i = p + 1, . . . , n, where α1, α2, . . . , αp are constants
representing the model parameters and εi is assumed to be a
white noise with a zero mean. The optimal model parameters,
as well as the model order, can be estimated by minimizing
the least square prediction error, namely

min
α

n∑
i=p+1

(
xi −

( p∑
j=1

αp−j+1 xi−j + εi

))2

.

The optimal values are obtained by setting to zero the deriva-
tive of the above cost function with respect to each parameter.
Once the model parameters are defined, one can use the model
(1) to predict future samples. The resulting model, connecting
the previous samples to future ones, is linear.

In order to extend the linear model into a nonlinear one,
we consider the concept of kernel machines. A kernel is a
symmetric and continuous function defined by κ : X × X �→
X , where X is an input space with the Euclidean dot product
xi · xj for any xi,xj ∈ X . If

∑
i,j αiαjκ(xi, xj) ≥ 0 for

all αi, αj ∈ IR and all xi,xj ∈ X , then κ(·, ·) is a positive
semi-definite kernel. Moore-Aronszajn theorem [11] states

that each positive semi-definite kernel corresponds to a unique
(up to an isometry) feature space and vice-versa. This feature
space H is obtained using a mapping function Φ: X �→ H,
such that

κ(xi, xj) = 〈Φ(xi), Φ(xj)〉H, (2)

for any xi,xj ∈ X , where 〈· , ·〉H denotes the correspond-
ing inner product in H, and let ‖ · ‖H be its corresponding
norm. Many machine learning techniques can be written in
terms of inner product of data. By substituting the canonical
inner product by a positive semi-definite kernel, one implic-
itly applies a mapping function Φ. This is the so-called kernel
trick. The kernel is often referred to as the reproducing kernel
and the feature space is the reproducing kernel Hilbert space
(RKHS).

To derive the kernel AR model, we consider a nonlin-
ear mapping function Φ(·) from the input space X to some
feature space H. Thus, for a time series, the sequence
x1, x2, . . . , xn in the input space is mapped into the set of
images Φ(x1), Φ(x2), . . . ,Φ(xn) in the feature space. Us-
ing the same AR principle, each sample xi is now replaced by
its corresponding Φ(xi), thus (1) is now written as

Φ(xi) =

p∑
j=1

αp−j+1 Φ(xi−j) + εΦi , (3)

where the result Φ(xi) is defined in the feature space [5]. In
a more compact way, the above equation can be represented
matrix-wise by

Φ(xi) = ϕiα,

where α is the vector of the model parame-
ters, α = [αp, αp−1, · · · , α1]

�, and ϕ con-
tains the last p previous mapped samples, that is
ϕi = [Φ(xi−1),Φ(xi−2), · · · ,Φ(xi−p)].

By analogy with the linear form of kernel AR model,
the model parameters αp−j+1 are estimated by minimizing
the least square prediction error, between the estimated value∑p

j=1 αp−j+1Φ(xi−j) and the real one mapped toΦ(xi). For
a sequence of n available samples, we minimize with respect
to α the cost function

min
α

n∑
i=p+1

∥∥∥Φ(xi)− p∑
j=1

αp−j+1Φ(xi−j)
∥∥∥2
H

. (4)

By expanding this expression using the definition of ‖ · ‖2
H

=
〈·, ·〉H, and then taking its derivative with respect to α, and
setting it to zero, we get the optimal parametersα of the non-
linear AR model with

α =

(
n∑

i=p+1

Ki

)−1( n∑
i=p+1

κi

)
,

where Ki = ϕ�
i ϕi and κi = ϕ�

i Φ(xi) is a column vector
of p entries. It is obvious that the optimal parameters require
the inversion of a p-by-pmatrix, p is often small.
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3. PRE-IMAGE TECHNIQUES

Once the model parameters α estimated, we can now predict
future samples based on (5), namely for i > n

ψi =

p∑
j=1

αp−j+1 Φ(xi−j). (5)

In this expression, the result is denoted by ψi, since such re-
sult in the feature space may not correspond to a valid image
of some arbitrary sample in the input space. Therefore, we
need to go back to the input space and determine the coun-
terpart in the original space having its image ψi in the feature
space. Nevertheless, the exact pre-image may seldom exist,
and when it exists, it may not be unique. This is known as the
pre-image problem, where one seeks an approximate solution
x∗ whose counterpart Φ(x∗) is as close as possible to ψi.

The resulting optimization problem is defined by

x∗i = argmin
x

1

2
‖Φ(x)− ψi‖

2
H,

or equivalently by replacingψi with its definition in the above
equation, we obtain

x∗i = argmin
x

1

2

∥∥∥Φ(x)− p∑
j=1

αp−j+1 Φ(xi−j)
∥∥∥2
H

.

Next, we consider the equivalent optimization problem

x∗i = argmin
x
Ji(x),

where

Ji(x) = −

p∑
j=1

αp−j+1 κ(xi−j , x) +
1

2
κ(x, x),

with the elimination of the term independent of x.
Many techniques have been proposed in literature, such as

the gradient descent scheme, the fixed-point iterative method,
the multi-dimensional scaling technique and the conformal
map approach. We will describe each one of them in the fol-
lowing subsections.

3.1. Gradient descent scheme

The gradient descent scheme is a first-order iterative opti-
mization technique. To solve the above optimization prob-
lem, one takes steps ηt proportional to the opposite direction
of the gradient ∇x with respect to x of the function Ji. This
is expressed by

x∗i,t+1 = x∗i,t − ηt∇xJi(xi,t),

where the index t denotes the iterative technique. As this
technique starts from an initial point, and presents an itera-
tive scheme, one might have to run the algorithm many times

from different initial points in order to obtain the global min-
imum, without getting stuck in local minima. In practice, the
stepsize parameter ηt is constant, independent of the iteration
t.

3.2. Fixed point iterative scheme

When using kernels, one can implement easily the fixed-point
iterative scheme [7]. Based on the gradient descent scheme,
we take into consideration the type of the kernel used, as il-
lustrated next for the Gaussian and the polynomial kernels.

The Gaussian kernel is defined by

exp(−‖xi − xj‖
2/2σ2),

for any xi, xj ∈ X , where σ is a tunable bandwidth parame-
ter. The resulting cost function Ji(x) is defined by

−

p∑
j=1

αp−j+1 exp(−‖xi−j − x‖2/2σ2).

Taking the derivative of the above expression with respect to
x, and setting it to zero, we get the fixed-point iterative ex-
pression

x∗i,t+1 =

∑p

j=1 αp−j+1 exp(−‖xi−j − x∗i,t‖
2/2σ2)xi−j∑p

j=1 αp−j+1 exp(−‖xi−j − x∗i,t‖
2/2σ2)

.

The polynomial kernel is defined by

(〈xi, xj〉+ c)q,

where q is a positive integer, and c is a positive parameter
often set to 1. The cost function Ji(x) associated with this
kernel is defined by

−

p∑
j=1

αp−j+1(〈xi−j , x〉+ c)q +
1

2
(〈x, x〉+ c)q,

leading to the fixed-point iterative expression

x∗i,t+1 =
−
∑p

j=1 αq−j+1(〈xi−j , x
∗
i,t〉+ c)q−1 xi−j

(〈x∗i,t, x
∗
i,t〉+ c)q−1

.

3.3. Multi-Dimensional Scaling

For many commonly used kernels, there exists a simple rela-
tionship between ‖xk − x�‖ in the input space and ‖Φ(xk)−
Φ(x�)‖H in the feature space [12]. Using this concept,
a multi-dimensional scaling (MDS) approach is considered
in [8]. Consider the distance in the feature space, δi,j =
‖ψi − Φ(xi−j)‖H, and its counterpart in the input space,
‖x∗ − xi−j‖, for j = 1, 2, . . . , p. Ideally, these distances
are equal

‖x∗i − xi−j‖ = ‖ψi − Φ(xi−j)‖H,
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for every j = 1, 2, . . . , p. In order to find the pre-image,
we evaluate the above equation for the p available samples
xi−1, xi−2, . . . , xi−p, namely

2〈x∗i , xi−j〉 = 〈x∗i , x
∗

i 〉+ 〈xi−j , xi−j〉 − δi,j ,

for j = 1, 2, . . . , p. After taking the average of centered data,
the pre-image value is obtained with

x∗i =
1

2
(X iX

�

i )
−1Xi

(
diag(X�

i X i)− [δ21 δ
2
2 · · · δ2n]

�

)
where Xi = [xi−1, xi−2, · · · , xi−p] and diag(·) is the diag-
onal operator. This expression is only valid for the Gaussian
kernel.

3.4. Conformal Map Approach

Using the same strategy as MDS, not only the distance is con-
served, the angular mesure is also the same by preserving in-
ner product measures, since x�i xk/‖xi‖‖xk‖ defines the co-
sine of the angle between xi and xk . To this end, a coordinate
system in the feature space is constructed having an isometry
with respect to the input space. Once this coordinate system
is build, any element in the feature space can be written as
a combination its projection onto these coordinate functions.
Details of the conformal map algorithm are given in [9]. This
results into the following expression

x∗i = (XiX
�

i )
−1Xi

(
X�

i Xi − ηK−1
i

)
α,

where η is a tunable regularization parameter. It is worth not-
ing that this expression is independent of the nature of the
kernel type. As it is investigated in the next section, this tech-
nique presents very good results, such as the fixed-point tech-
nique and it only needs a fraction of time for the calculation
to be done.

4. EXPERIMENTS

In order to give a comparative study for each of the afore-
mentioned pre-image methods, we considered a well-defined
benchmark of four time series:

• The Laser is a sequence of laser measurements taken
from the Santa Fe competition (dataset A).

• The Mackey-Glass time series provides a model of the
blood cells production evolution. It is defined by a de-
lay differential equation

dx(t)

dt
= −0.1 x(t) +

0.2 x(t− τ)

1 + x(t− τ)10

which, for values of τ greater than 16.8, shows some
highly nonlinear chaotic behavior. For τ = 30, the time
series is denotedMG30.

• The Ikeda map refers to a two dimensional series of
laser dynamics. Starting from an initial point, x(0) =
[x1(0), x2(0)]

�, it is defined by⎧⎨
⎩

ω(t) = c1− c3/(1 + x21(t) + x22(t))
x1(t+ 1) = r + c2(x1(t) cosω(t) + x2(t) sinω(t))
x2(t+ 1) = c2(x1(t) sinω(t) + x2(t) cosω(t))

where c1, c2, c3 and r are constants; in our case, we set
c1 = 0.4, c2 = 0.84, c3 = 6.0, r = 1.0 and x(0) =
[1 0.001]�.

• A Lorenz attractor is the solution of the system defined
by the following differential equations⎧⎪⎨

⎪⎩
dx(t)
dt

= −a x(t) + a y(t)
dy(t)
dt

= −x(t) z(t) + r x(t) − y(t)
dy(t)
dt

= +x(t) y(t)− b z(t)

For the experimentations, we set a = 10, r = 28 and
b = 8/3.

For a comparative study, the parameters were learnt from
the first 300 samples of the time series, and the mean square
error (MSE) of prediction is estimated over the next 300 sam-
ples1. In the learning stage, the model parameters and its or-
der were estimated, as well as the tunable parameters such
as the kernel parameter (σ or q) and η. The optimal val-
ues for σ and η were estimated by a grid search within val-
ues {2−12, 2−11, . . . , 211, 212}. For the polynomial ker-
nel, the optimal value of the parameter q was chosen from
q ∈ {1, 2, 3, 4, 5, 6}. Such values have been chosen in order
to elaborate each and every one of these techniques. For the
two iterative methods, 100 iterations were needed to arrive to
the optimal values.

Results are given in Table 1 for the Gaussian kernel and
Table 2 for the polynomial kernel. It is obvious that, inde-
pendent of the kernel type, the iterative pre-image techniques
such as the gradient descent scheme and the fixed-point itera-
tive method required more computational time than the MDS
and conformal map approaches. For the MSE, except the case
of the Laser data with the Gaussian kernel, both the fixed-
point and the conformal map techniques provided essentially
the least MSE. It is clear that, taking into account the compu-
tational time, the conformal map is the best choice.

5. CONCLUSION

We presented the kernel AR model to predict future samples
for any time series. This is done by combining the concept
of kernel machines with the AR model. The prediction of up-
coming samples is defined by a pre-image schema. In this

1The computational time was estimated on Matlab 2009 running on a
desktop dual-core PC Pentium 3.4 GHz 1GO RAM.
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Table 1. Comparison between several pre-image techniques applied on different types of time series using a Gaussian kernel.

Laser MG30 Ikeda Lorenz

G
ra

di
en

t

σ 2−10 2−6 2−3 23

time 3.0736 3.0953 6.0193 9.4399
MSE 876.1293 0.0832 0.7187 150.0145

fix
ed

-p
t. σ 22 2 210 26

time 5.6392 8.2743 12.8256 34.2385
MSE 16.5673 0.0162 0.5194 0.00035

M
D

S σ 210 2−10 210 22

time 0.1002 0.1608 0.1976 0.2735
MSE 11.5991 0.083 0.5825 99.2851

co
nf

or
m

al σ 25 2 23 22

η 2−10 2−10 2−10 2−10

time 1.0172 0.9916 1.9249 2.3637
MSE 17.1484 0.0166 0.5201 0.1079

Table 2. Comparison between several pre-image techniques, using a polynomial kernel.

Laser MG30 Ikeda Lorenz

G
ra

di
en

t q 2 5 6 2
η 2−10 2−2 2−12 2−11

time 1.9851 2.0025 3.7099 5.5710
MSE 876.1293 0.1000 0.7187 339.3405

fix
ed

-p
t. q 5 2 2 5

time 7.2244 8.1867 19.0268 23.6776
MSE 16.0169 0.0161 0.5246 0.007

co
nf

or
m

al q 2 2 2 2
η 2−9 2−10 2−9 2−10

time 0.5113 0.4877 0.9250 1.2632
MSE 18.6591 0.0160 0.5171 0.0025

paper, a comparative study between several pre-image tech-
niques is given. To this end, a Gaussian and a Polynomial ker-
nels are used on four different time series. Experiments show
that the conformal map, recently introduced by two of the
authors, is the best pre-image technique from both the mean
square prediction error and the computational time.
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