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†Laboratoire Fizeau(UMR 6525 CNRS), Université de Nice Sophia-Antipolis, 06108 Nice, France

‡ Department of Electrical Engineering, Federal University of Santa Catarina, 88040-900, Florianópolis, SC - Brazil

Abstract—Wireless sensor networks are designed to perform
on inferences about the environment they are sensing. Due to the
inherent physical characteristics of systems under investigation,
non-negativity is a desired constraint that can be imposed on
the system parameters in some real-life phenomena sensing
tasks. In this paper, we propose a kernel-based machine learning
strategy to deal with regression problems. Multiplicative update
rules are derived in this context to ensure the non-negativity
constraints to be satisfied. A distributed algorithm that requires
only communication between neighbors is proposed to cope with
typical limited energy and bandwidth resources. Synthetic data
managed by heat diffusion equations are used to compare the
proposed and known algorithms and to illustrate their tracking
capabilities.

I. INTRODUCTION

Wireless sensor networks (WSNs) rely on sensor devices
deployed in an environment to provide an inexpensive way to
monitor physical phenomena. In many real-life phenomena,
including biological and physical ones, physical character-
istics inherent to the system under investigation require the
imposition of non-negativity constraints on the parameters to
estimate. For instance, observations in studies of concentration
fields or thermal radiation fields are always described with
non-negative values ( in ppm or in Kelvin). Non-negativity as
a physical constraint has received growing attention from the
signal processing community during the last decade[1].

Non-parametric approaches based on reproducing kernel
methods have recently been successfully applied to distributed
regression with collaborative networks. In [2], the authors
present a general framework for distributed linear regression
motivated by WSNs. In [3], a learning algorithm based on
successive orthogonal projections is derived to solve the reg-
ularized kernel least-squares problem for regression in sensor
networks. In [4], the authors present a projection based kernel
distributed learning strategy with reduced order models by
using a sparsification criterion. These works provide compre-
hensive studies in the functional regression and estimation for
distributed learning in WSNs. In [5], the authors explore online
algorithm for linear system identification. However, none of
these algorithms can be used directly to solve the estimation
problems in sensor networks under non-negativity constraints.

In this paper, we concentrate on the problem of modeling
physical phenomena under non-negativity constraints, and of
tracking its evolution. Firstly we formulate the non-negative

regression with kernels in a centralized context. A simple
multiplicative algorithm is derived to solve this problem. Then
we show how the optimization problem can be relaxed to a
problem of distributed regression in which nodes only need to
communicate with neighbors.

II. NON-NEGATIVE REGRESSION FOR INFERENCE

Within the context of learning in a wireless sensor network
of N sensors, we often model a physical phenomenon as a
function of the location. Consider a relationship ψ(.) between
the sensor’s measurement and its position xn. We seek to
estimate the function ψ(·) based on newly available position-
measurement data yn to minimize the summed square error

min
ψ∈H

N∑
n=1

E (ψ(xn)− yn)
2
. (1)

By virtue of the representer theorem, the function ψ(·) of
reproducing Hilbert kernel space H can be written with a
kernel expansion ψ(·) =

∑N
n=j αjκ(·,xn). Doing that, the

cost function can be written as

J(α) =

N∑
n=1

E(

N∑
j=1

αjκ(xn,xj)− yn)
2

=

N∑
n=1

E
(
α⊤κxn − yn

)2
. (2)

After determining the weight vector α , the field can be
inferred at any points x. One of the most widely used kernels
is the Gaussian kernel κ(xi,xj) = e−∥xi−xj∥2/2σ2

When a
non-negative field is to be estimated, and considering that
the Gaussian kernel is always positive, each component of
the coefficient vector α should be constrained to be non-
negative to ensure a non-negative inference function ψ(x) at
any given position x. The constrained optimization problem
can be formalized as

αo = argmin
α

J(α) (3)

subject to α ≥ 0 (4)

The gradient of J(α) is easily computed as follows

∇J(α) =
N∑
n=1

E
(
κxnκ

⊤
xn

α− ynκxn

)
(5)



As the evaluation of the gradient usually cannot be achieved in
many real-life applications, we use the instantaneous estimator

∇̃J(α) =
N∑
n=1

(
κ⊤
xn

κxnα− ynκxn

)
(6)

Note that ψ(.) is linear with respect to the kernel functions
κ(.,xn), although it is nonlinear with respect to xn. Therefore,
we use an algorithm similar to that proposed in our previous
work [5] to solve the problem. We decompose the gradient
−∇̃J(α) as follows,

[−∇J̃(α(k))]i = [U(α(k))]i − [V (α(k))]i (7)

where [U(α(k))]i and [V (α(k))]i are strictly positive com-
ponents. The update equation for the i-th component can then
be expressed as

αi(k + 1) = αi(k)
[U(α(k))]i
[V (α(k))]i

(8)

This expression is referred to as the multiplicative weight
update algorithm. If we initialize the weight vector with a
positive vector, the constraints will be always satisfied due
to the non-negativity of [U(α(k))]i and [V (α(k))]i. The
gradient defined by (6) can be decomposed as in (7) by
setting U(α(k)) =

∑N
n=1 ynκxn + ξ and V (α(k)) =∑N

n=1 κxnκ
⊤
xn

α(k) + ξ, with ξ positive to avoid [U(α(k))]i
to become negative due to the noise. The centralized algorithm
vector weight update is then

α(k + 1) = α(k)diag

(
[
∑N
n=1 ynκxn + ξ]i

[
∑N
n=1 κxnκ

⊤
xn

α(k) + ξ]i

)
(9)

III. DISTRIBUTED REGRESSION WITH DIFFUSION
STRATEGY IN WSNS

In what follows, we show how the optimization problem
in (2) can be relaxed for distributed inference. Let N denote
the set of neighbors for sensor k. Consider an N ×N matrix
B with entries {bn,k} defined by bn,k = 0 if n /∈ Nk and
B1 = 1, B = 1⊤. With the constraint of communication
range, the cost function of (2) is rewritten as follows

J(α) = Jk(α) +
N∑

n=1,n ̸=k

Jn(α) (10)

We define diagonal matrices Ck for each node k with elements
ck,i,i = 1 if i ∈ Nk, and ck,i,i = 0 otherwise. The local cost
function Jk(α) is defined as

Jk(α) =
N∑
n=1

bn,kE
(
α⊤Cnκxn − yn

)2
(11)

which is actually equivalent to

Jk(αk) =
∑
n∈Nk

bn,kE
(
α⊤
k κxn − yn

)2
(12)

Each node could only communicate with the nodes within the
range of a neighborhood of node k. The instananeous gradient
of the cost function (10) at each node k is

[∇J(αk)]i =

[ ∑
n∈Nk

bn,k
(
κxnκ

⊤
xn

αk − ynκxn

)]
i

+

 N∑
n=1,n ̸=k

Cn∇Jn(α)


i

(13)

where i ∈ Nk. To relax the problem so that sensors only need
to get information from its neighbors, we use

[∇J(αk)]i =

[ ∑
n∈Nk

bn,k
(
κxnκ

⊤
xn

αk − ynκxn

)]
i

+

 N∑
n∈Nk,n ̸=k

Cn∇Jn(α)


i

(14)

The first part of (14) can be viewed as the gradient of local
cost function ∇Jk(αk). Using the proposed multiplicative
algorithm, [−∇Jk(αk)]i is decomposed into two positive
components [Uk(α(k))]i =

[∑
n∈Nk

bn,kynκxn

]
i
+ ξ and

[Vk(α(k))]i =
[∑

n∈Nk
bn,kκxnκ

⊤
xn

αk(k)
]
i
+ξ. The second

part of (14) can be viewed as a regularization item which is
decomposed using

[
Ũk(α(k))

]
i
=
∑
n∈Nk,n ̸=k [Un(α(k))]i

and
[
Ṽ k(α(k))

]
i

=
∑
n∈Nk,n ̸=k [V n(α(k))]i, where

[U(α(k))]i and [V (α(k))]i are transferred from its neighbors.
Finally, the coefficients update rule for node k is written in
multiplicative form as

αi(k + 1) = αi(k)
[Uk(α(k))]i +

[
Ũk(α(k))

]
i

[Vk(α(k))]i +
[
Ṽ k(α(k))

]
i

(15)

IV. SIMULATION EXPERIMENTS

We consider a classical application of estimating a heat
diffusion field governed by the partial differential equation

∂T (x, t)

∂t
− c∇2

xT (x, t) = Q(x, t).

We studied the problem of monitoring the evolution of the
heat using N = 100 random sensors. One heat source was
activated from t = 1 to t = 100, and the second one from
t = 100 to t = 200. The bandwidth of Gaussian function
σ = 0.1826. Two random scenarios, respectively depicted in
Figure 1 and Figure 2, are taken into simulations. In the 1st

scenario, two sources are located at positions relatively ”poor”
of sensors; otherwise, in the 2nd scenario, the two sources are
located at ”better” positions. The algorithms compared are: 1)
Centralized multiplicative algorithm; 2) Proposed distributed
multiplicative; 3) Centralized Barzilai-Borwein gradient pro-
jection; 4) Distributed gradient projection. The learning curves
are shown in figures 3 and 4 respectively. The abrupt change
in heat sources at t = 100 is clearly visible, and the proposed
algorithm has good performance with little computational
burden.



−1 −0.5 0 0.5 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Fig. 1. 1st simulation scenario.The edges between two nodes show
the neighborhood relation. Two magenta △ represent the positions
of two sources.
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Fig. 2. 2nd simulation scenario. In this scenario, the positions of two
sources are more close to sensors than that in scenario1.
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Fig. 3. Convergence comparison of the 1st scenario.

V. CONCLUSION

In many real-life phenomena non-negativity is a desired
constraint that must be imposed on the parameters to estimate
due to the inherent physical characteristics of systems In this
paper, we proposed a multiplicative method for data inference
under non-negativity constraints. Under the context of wireless
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Fig. 4. Convergence comparison of the 2nd scenario.

sensor networks, we developed a distributed learning algorithm
to enable each sensor to estimate the non-negative field with
the help of neighbor information. The proposed algorithm also
shows a good performance in its tracking capacity.
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