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ABSTRACT

In this paper, we propose a distributed learning strategy in
wireless sensor networks. Taking advantage of recent de-
velopments on kernel-based machine learning, we consider
a new sparsification criterion for online learning. As opposed
to previously derived criteria, it is based on the estimateder-
ror and is therefore is well suited for tracking the evolution
of systems over time. We also derive a gradient descent al-
gorithm, and we demonstrate its relevance to estimate the dy-
namic evolution of temperature in a given region.

Index Terms— Intelligent sensors, adaptive estimation,
distributed algorithms, nonlinear systems

1. INTRODUCTION

Wireless ad-hoc sensor networks have emerged as an in-
teresting and important research area in the last few years.
They rely on sensor devices deployed in an environment to
support sensing and monitoring, including temperature, hu-
midity, motion, acoustic, etc. Low cost and miniaturization
of sensors involve limited computational resources, power
and communication capacities. Consequently, wireless ad-
hoc sensor networks require collaborative execution of a dis-
tributed task on a large set of sensors, with reduced commu-
nication and computation burden.

In this paper, we consider the problem of modeling phys-
ical phenomena, such as a temperature field, and track its
evolution. Many approaches have been proposed in the sig-
nal processing literature to address this issue with collabo-
rative sensor networks. See [1] for a survey. As explained
in [1], the incremental subgradient optimization scheme de-
rived in [2] for (a single) parameter estimation is not appro-
priate for large-order models. In [3], the authors use both
spatial correlation and time evolution of sensors to propose a
reduced-order model. However, this approach highly depends
on the modeling assumption. Recently, model-independent
methods have been investigated. A distributed learning strat-
egy in sensor networks is studied in [4], where each sensor

acquires information from neighboring sensors to solve lo-
cally a least-squares problem. Unfortunately, this broadcast
leads to high energy consumption.

Recently, kernel machines for nonlinear functional learn-
ing have gained popularity [5, 6]. Nevertheless, these meth-
ods are not suitable for distributed learning in sensor networks
as the order of models scales linearly with the number of de-
ployed sensors and measurements. In order to circumvent this
drawback, we propose in this paper to design reduced order
models by using an easy to compute sparsification criterion.
As opposed to a criterion previously derived in [7, 8, 9], it
depends on the estimated error. This approach is, therefore,
more relevant in updating the model since it is based on avail-
able measurements. Based on this criterion and a projection
scheme, we derive the learning algorithm by incrementing the
model order if necessary, leaving it unchanged, or even de-
creasing it. We illustrate the proposed approach for learning
a temperature field and tracking its evolution over time. Be-
fore proceeding, we briefly review functional learning with
kernels and its online setting.

2. ONLINE LEARNING WITH KERNELS

Consider a reproducing kernelκ : X × X → IR. Let us de-
note byH its reproducing kernel Hilbert space (RKHS) with
inner product〈· , ·〉H. This means that everyψ(·) of H can be
evaluated at anyx ∈ X by ψ(x) = 〈ψ(·), κ(·,x)〉H. This
allows us to writeκ(xi,xj) = 〈κ(·,xi), κ(·,xj)〉H, which
defines the so-called reproducing property. One of the most
widely used reproducing kernel is the Gaussian kernel, given
byκ(xi,xj) = e−‖xi−xj‖

2/2σ2

with σ the kernel bandwidth.
Within the context of distributed learning in a wireless

sensor network, we model a physical phenomenon, e.g., a
temperature field, as a function of the locationx. Let us
denote it byψn(·) ∈ H whereX represents the 2-D space.
We seek to estimate the functionψn(·) at sensorn based on
newly available position-measurement data,(xn, dn), and the
previous estimateψn−1(·). For this purpose, we consider the



following problem

ψn = arg min
ψ∈H

‖ψn−1 − ψ‖2

H (1)

subject to ψn(xn) = dn. (2)

This optimization problem can be interpreted as a classical
adaptive filtering problem, applied here to functional estima-
tion in a RKHS. Expression (1) corresponds to the classical
principle of minimum disturbance, and the constraint (2) sets
to zero thea posteriorierror. Though a large class of adaptive
filtering techniques can be used here, we restrict ourselvesto a
gradient descent approach as studied in [10] and we consider
the updating step

ψn = ψn−1 + ηn(dn − ψn−1(xn))κ(xn, ·).

In what follows, we set the tunable positive stepsize toηn = 1
as used in [11]. In addition, we consider unit-norm kernel
functions, i.e.,κ(x,x) = 1 for anyx ∈ X . The above ex-
pression yields the updating rule

ψn = ψn−1 + ǫnκ(xn, ·), (3)

whereǫn = dn − ψn−1(xn) is thea priori estimation error.
Applying this updating rule sequentially ton sensors leads to
then-order model

ψn =

n
∑

i=1

αiκ(xi, ·), (4)

where all the coefficientsαi are identical to those ofψn−1,
exceptαn = ǫn.

The above updating rule leads to models with orders equal
to the number of available data. Such models are not suitable
for large-scale data problems or online learning. This is the
case of models generated by most kernel machines. To over-
come this drawback, we propose in the next section a new
online sparsification technique to control the model order.

3. THE PROPOSED SPARSIFICATION CRITERION

We consider anm-order model, withm several orders of mag-
nitude lower thann, defined by

ψn(·) =

m
∑

k=1

αk κ(xωk
, ·), (5)

where {ω1, . . . , ωm} is a subset of{1, . . . , n}. We
thus restrict the expansion tom kernel functions care-
fully selected among then kernel functions in model
(4). In [7, 8], we proposed a sparsification tech-
nique for designing models with kernel functions
having small coherence, the latter being defined as
maxi6=j |〈κ(xωi

, ·), κ(xωj
, ·)〉H|/‖κ(xωi

, ·)‖H‖κ(xωj
, ·)‖H.

The sparsification rule consisted of including, for each sensor
n, the kernel functionκ(xn, ·) into the model if

max
k=1,...,m

|κ(xn,xωk
)|

√

κ(xn,xn)κ(xωk
,xωk

)
≤ ν0, (6)

with ν0 a threshold in[0, 1[ determining the level of sparsity
of the model. In [7, 8], we studied this sparsification rule for
online learning. We also derived some properties of the re-
sulting model as well as connections to other sparsification
techniques. In [9], we investigated the application of thiscri-
terion for wireless sensor networks. The independence of the
sparsification rule with respect to measurements and to esti-
mation errors limited the performance of the resulting func-
tion estimation process for that application. In this paper, we
propose to overcome this limitation by using the concept of
coherence between theψk ’s.

The functionψn defined in (3) is selected as the new
model if

max
k=1,...,n−1

|〈ψn, ψk〉H|

‖ψn‖H‖ψk‖H
≤ ν, (7)

with ν a threshold. Otherwise, we use the projection ofψn
onto the spaceHm−1 spanned by them− 1 previously added
kernel functions. It is obvious that solving this problem is
untractable in practice since we need to know all previous es-
timated functions,ψ1, ψ2, . . . , ψn−1. However, because these
functions belong toHm−1, we can circumvent this difficulty
as explained below.

Proposition 1. Letψ⊥
n be the projection ofψn onto the space

spanned by them− 1 kernel functions. If we have

〈ψn, ψ
⊥
n 〉H

‖ψn‖H‖ψ⊥
n ‖H

≤ ν, (8)

then the inequality(7) is satisfied.

Sketch of proof.To prove this, note that

ψ⊥
n = arg max

φ∈Hm−1

〈ψn, φ〉H
‖ψn‖H‖φ‖H

.

Since the estimated functionsψ1, ψ2, . . . , ψn−1 belong to the
spaceHm−1, the criterion (8) directly leads to (7).

Upon the arrival of a new data(xn, dn), one of the follow-
ing two alternatives holds. If (8) is satisfied, the kernel func-
tionκ(xn, ·) is then added to the model according to (3). Oth-
erwise, the model order is not incremented and we consider
the closest function toψn in Hm−1, that is,ψ⊥

n . Addition-
ally to this rule, we propose a strategy to decrease the model
order. With sensors being revisited in order to follow the evo-
lution of the system over time, new data may correspond to a
sensor1 that was incorporated in the model in a previous pass.

1Sensors are assumed motionless; Otherwise, one may includea tolerance
range for the positions. However, this is beyond the scope ofthis paper.



Let κ(xn, ·) be a kernel function that is already in the model.
Its relevance depends now on the new measurementdn. In
that case, criterion (8) is evaluated to determine whether this
kernel function should be kept or removed from the model.

According to (3), it clearly appears that this rule depends
on the estimated error. It is thus related todn as opposed to
rule (6). It can be shown that the order of the model resulting
from rule (8) remains finite asn goes to infinity, even when
the decreasing scheme is not used. Due to limited space, the
proof of this property is beyond the scope of this paper.

4. ONLINE LEARNING ALGORITHM

In this section, we derive our online learning algorithm, with
recursive techniques for both incremental and decremental
stages. Before proceeding, we formulate the projection prob-
lem in a RKHS.

4.1. Projection in a RKHS

Letψ⊥
n =

∑m−1

i=1
βiκ(xωi

, ·) be the projection ofψn defined
by equation (3) onto the space spanned by the(m− 1) kernel
functionsκ(xω1

, ·), . . . , κ(xωm−1
, ·). The functionψ⊥

n is ob-
tained by minimizing‖ψn − ψ⊥

n ‖
2

H with respect to theβi’s,
namely,

‖ǫnκ(xn, ·) −

m−1
∑

i=1

(βi − αi)κ(xωi
, ·)‖2

H.

By expressing this norm in terms of inner products and us-
ing the reproducing property, we formulate the optimization
problem as

min
β

(β − α)⊤Km−1(β − α) + ǫ2n − 2ǫn(β − α)⊤κn,

whereα, β andκn are(m − 1)-length column vectors with
entriesαi, βi, andκ(xωi

,xn), respectively, andKm−1 is a
(m− 1)-by-(m− 1) matrix whose(i, j)-th entry is given by
κ(xωi

,xωj
). By taking the derivative of the above objective

function with respect toβ, and setting it to zero, we get

β = α + ǫnK
−1

m−1
κn, (9)

where we have assumed that the Gram matrixKm−1 is non-
singular. We can now present the different building blocks of
the algorithm.

4.2. The sparsification criterion

The sparsification criterion needs to be evaluated by each sen-
sor noden. The corresponding kernel functionκ(xn, ·) is
added to the model if it satisfies the rule (8). If it already be-
longs to the model, this rule is used to verify whether it can

be removed or not. By expanding each term in the left-hand
side of expression (8), we get the rule

α⊤Km−1α + 2ǫnα
⊤κn + ǫ2nκ

⊤
nK−1

m−1
κn

α⊤Km−1α + 2ǫnα⊤κn + ǫ2n
≤ ν2

This expression as well as equation (9) require to compute
the inverse of the Gram matrixKm−1. This operation can be
performed by using a rank-one update, which requiresO(m2)
operations, as derived next for both incremental and decre-
mental stages.

4.3. Incremental and decremental steps

Increasing the model order by includingκ(xn, ·) into the ker-
nel expansion requires augmenting the Gram matrix as fol-
lows

Km =

[

Km−1 κn
κn

⊤ κ(xn,xn)

]

, (10)

with κ(xn,xn) = 1. The inverse ofKm can be computed by
using the rank-one update given by
[

A B

C D

]−1

=

[

A−1
0

0 0

]

+

[

−A−1B

I

]

×

(D − CA−1B)−1
[

−CA−1 I
]

, (11)

with I the identity matrix. We obtain the updating rule

K−1

m =

[

K−1

m−1
0m−1

0m−1
⊤ 0

]

+
1

1 − κn⊤K−1

m−1
κn

×

[

−K−1

m−1
κn

1

]

[

−κn
⊤K−1

m−1
1
]

,

where0m−1 is a(m− 1)-length column vector of zeros.
In the decremental stage,κ(xn, ·) is removed from the

model. This reduces the model order fromm tom − 1. The
Gram matrixKm−1 is obtained fromKm by considering ex-
pression (10), where the latter matrix is arranged in order that
its last column and row have entries relative toxn. Using the
notation

K−1

m =

[

Qm−1
q

q⊤ q0

]

,

we obtain from (11) the following matrix update equation

K−1

m−1
= Qm−1

−
q q⊤

q0
.

5. SIMULATION RESULTS

To illustrate the relevance of the proposed technique, we con-
sider a classical application of estimating a temperature field
governed by the partial differential equation2

∂T (x, t)

∂t
− c∇2

xT (x, t) = Q(x, t).

2Data simulated using MATLAB’s PDE toolbox.



0.01

0.01 0.01

0.08

0.08

0.08

0.15

0.15

0.
15

0.23

0.23

0.
23

0.3

0.
3

0.37

0.37
0.44

0.03

0.03

0.03

0.03

0
.2

2

0.22

0.22

0.22

0.22

0.41

0.41

0.41

0.41

0.41

0.6

0.6

0.
6

0.8

0.8

0.
8

0.98

0.98

1.17

0.12

0.12

0.12

0.12

0.12

0.12

0.43

0.
43

0.43

0.43

0.43

0.43

0
.4

3

0.7

0.7

0.7

0.7

0.
7

1

1

1

1

1
.3

5

1.35

1.35
1.35

1.66

1.66

1.
66

1.97

1.97

Fig. 1. Snapshots of the evolution of the estimated temperature att = 100 (left), t = 150 (center) andt = 200 (right). Selected sensors at
these instances are shown with big red dots, whereas the remaining sensors are represented by small blue dots.

HereT (x, t) denotes the temperature as a function of space
and time,c is a medium-specific parameter,∇2

x is the Laplace
spatial operator, andQ(x, t) is the heat added. We studied the
problem of monitoring the evolution of the temperature in a
2-by-2 square region with open boundaries and conductivity
c = 0.1, usingN = 100 sensors deployed randomly on a
grid. Two heat sources of intensity200 W were placed within
the region, the first one was activated fromt = 1 to t = 100,
and the second one fromt = 100 to t = 200.

Preliminary experiments were conducted to tune the pa-
rameters, yieldingσ = 0.5 andν = 0.995. In order to refine
the results, 10 passes through the network were conducted
at each instantt. Fig. 1 illustrates the estimated temperature
field at different times. It is can be observed that the selected
sensors for each snapshot follows the dynamic behavior of the
heat sources. The convergence of the proposed algorithm is
illustrated in Fig. 2 where we show the evolution over time of
the normalized mean-square prediction error, defined on all
the sensors by

1

N

N
∑

n=1

(dn − ψn−1(xn))
2

d2
n

.

The abrupt change in heat sources att = 100 is clearly visi-
ble, and highlights the convergence behavior of the algorithm.
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Fig. 2. Learning curve obtained fromt = 1 to t = 200. Time
t = 100 corresponds to a system modification.

6. CONCLUSION

In this paper, we proposed an online learning algorithm for
wireless sensor networks. It consisted of a kernel machine
associated with a new sparsification criterion. We highlighted
the relevance of this criterion and derived a learning algorithm
with model-order control. Applications to temperature track-
ing with dynamic heat sources were considered, and simula-
tion results showed the relevance of the proposed approach.
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