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ABSTRACT

In this paper, we propose a new approach to sensor local-
ization problems, based on recent developments in machine
leaning. The main idea behind it is to consider a matrix
regression method between the ranging matrix and the ma-
trix of inner products between positions of sensors, in order
to complete the latter. Once we have learnt this regression
from information between sensors of known positions (bea-
cons), we apply it to sensors of unknown positions. Re-
trieving the estimated positions of the latter can be done
by solving a linear system. We propose a distributed algo-
rithm, where each sensor positions itself with information
available from its nearby beacons. The proposed method is
validated by experimentations.

1. INTRODUCTION

In ad-hoc wireless sensor networks, a large number of ap-
plications require location awareness of the sensors, includ-
ing tracking, environmental monitoring and many military
applications. Without the knowledge of its position, the in-
formation captured by a sensor becomes obsolete. The main
building block of these networks is a low-cost sensor, with
low power resources, leaving no room to (absolute) self-
positioning device. To overcome this drawback, one in-
cludes in the network a small number of sensors with known
positions (and sometimes high power and communication
capabilities). These sensors, often known by anchors or
beacons and designated hereafter by the latter, communicate
to other sensors information allowing the latter to estimate
their positions. For this purpose, each sensor determines
ranging (distance) measurements with other sensors, from
some measurements such as the received signal strength in-
dication (RSSI), the connectivity, the hop count, the time
difference of arrival, ... Most work on localization in sensor
networks considers either multidimensional scaling (MDS)
techniques or semidefinite programming (see [1, 2], and ref-
erences therein), in order to determine a function that links
the ranging of the sensors to their positions, based on the
known positions of some beacons.
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Introduced by Aronszajn in the mid 50s, the usefulness
of reproducing kernels has been demonstrated in the last 15
years in the field of pattern recognition with the statistical
learning theory and the so called kernel machines, such as
support vector machines (SVM) and kernel principal com-
ponent analysis (kernel-PCA) [3]. Reproducing kernels pro-
vide new insights into sensor networks research field. This
has been known for a while, as many researchers in sen-
sor networks focus on detection, tracking and classification
using kernel machines. In recent years, there has been an
increasing interest in this framework for localizing sensors,
with kernel-PCA [4, 5], SVM [6], least squares regression
[7], and manifold regularization [8].

In this paper, we derive a two-stage strategy. First we
seek a mapping function between the ranging and the in-
ner products between positions of a given sensor with bea-
cons. Learnt with data available from beacons, it is then
applied to any sensor, leading to an estimate of the inner
products between its (unknown) position and the (known)
positions of the beacons. In the second stage, we determine
the position of the sensor from these estimated inner prod-
ucts. It turns out that the first stage is a matrix comple-
tion problem, where the inner-product matrix is completed
from the (entirely available) ranging matrix, and thus can
be solved with the recently introduced matrix regression
method [9]. By learning the regression from available data
in both matrices simultaneously, thus from inter-beacon in-
formation, we show that this reduces to a linear optimization
problem. The second stage can be solved by considering
the Nyström method, a technique for approximating kernel
matrices in the machine leaning community. We investi-
gate a distributed version of the method, by solving locally
the optimization problem. We emphasize that the proposed
method is independent of the ranging type, thus can be ap-
plied to RSSI, hop count, or any other ranging information.

This paper is organized as follows. We begin by pre-
senting the matrix regression method of sensor localization.
Then, in section 3, we derive a technique for determining
the position of the sensors. We propose, in section 4, a dis-
tributed algorithm, taking into account only nearby beacons
for the considered sensor. Finally, computer simulations are
carried out to validate the proposed approach.



2. THE MATRIX REGRESSION METHOD

Consider a network ofm sensors of unknown positions
andn beacons of known positions, living in ad-dimension
(2D or 3D) space. LetX and Y be the coordinate ma-
trices of beacons and sensors, respectively, of sizen-by-
d andm-by-d, and[X⊤ Y⊤]⊤ the overall coordinate ma-
trix. The inner product between their coordinates is given by

P =
[X

Y

]
[X⊤ Y⊤], which can be decomposed into four block

submatrices,Px = XX⊤, Pyx = YX⊤, Pxy = P⊤
yx, and

Py = YY⊤, as illustrated in (1) with unknown submatrices
set to gray-color. On the other hand, we have the overall
ranging matrix, denoted byK with entriesκ(xi, xj), sim-
ilarly decomposed intoKx, Kyx, Kxy, andKy, as given
in (1).

Kx Kxy

Kyx Ky

︸ ︷︷ ︸

K

→

Px Pxy

Pyx Py

︸ ︷︷ ︸

P

(1)

In a conventional regression problem, one seeks a func-
tion φ(·) that links an input variablex into a response
(output) variablez, under the constraintsφ(xi) = zi for
all available training data{(x1, z1), . . . , (xn, zn)}. While
there exists an infinite number of functions verifying such
constraints, one considers functions with some regularizing
properties (such as smoothness). This can be done by re-
stricting the hypothesis space to the RKHS of a given repro-
ducing kernel, sayκ(·, ·). Moreover, from the Representer
Theorem [10], the optimal function has the form

φ(·) =

n∑

k=1

αkκ(xk, ·). (2)

For instance, this is true for kernel-PCA, where each princi-
pal axisφ(·) is determined by itsn coefficientsαk, obtained
by an eigen-decomposition of then-by-n matrix of entities
κ(xi, xj), thusKx. Sinceφ(x) corresponds to the princi-
pal coordinate ofx, the latter can be represented into a low-
dimensional space by considering only a couple of princi-
pal coordinates. Since this is the essence of both MDS and
kernel-PCA techniques, localization in sensor networks us-
ing kernel-PCA is proposed in [4], or more recently [5] (see
[11] for a connection to MDS).

In what follows, we consider the general case of deter-
mining a set of optimal functions, fully described by their
coefficients, which identifies the mapping between the two
matrices described in (1). This is known as a matrix re-
gression problem [9], between the input dataκ(xi, xj) of

matrixK and the outputxix
⊤

j of P. We learn this problem
from the available input-output couples, i.e.Kx andPx.
For this, we consider a model of the form

Ψ(xi, xj) = xix
⊤

j , (3)

and determine it from inter-beacon information. As
above, we consider a particular form ofΨ, by rep-
resenting eachx in some coordinates obtained with
a set of functions, [φ1(x) φ2(x) · · · ]⊤, leading to
Ψ(xi, xj) = [φ1(xi) φ2(xi) · · · ][φ1(xj) φ2(xj) · · · ]⊤ =
∑

h φh(xi)φh(xj). In analogy to kernel-PCA where these
are principal coordinates obtained from principal axes con-
structed from available dataκ(xk, xℓ), we consider the
same form as (2) for allφh’s, constructed fromKx. There-
fore one should determine for eachφh the optimal coeffi-
cient vectorα = [α1 α2 · · · αn]⊤, with

φh(xi)φh(xj) =
( n∑

k=1

αkκ(xk, xi)
)( n∑

ℓ=1

αℓκ(xℓ, xj)
)

= κ⊤

i α α⊤κj

whereκi is thei-th column vector ofKx. From the sum of
these terms and (3), we getxix

⊤

j = Ψ(xi, xj) = κ⊤

i Aκj ,
whereA is a coefficient matrix. Since this should be satis-
fied for all beacons, i.e.i, j = 1, . . . , n, we can write the
optimization problem in matrix form, with

min
A

‖Px − K⊤

x AKx‖
2
F , (4)

where‖ · ‖F is Frobenius norm. Once we obtain the opti-
mal coefficient matrixA, we can apply the resulting map to
sensors with unknown positions, withxiy

⊤

j = Ψ(xi, yj).
From expressions above, we obtain the matrix expression

Pxy = K⊤

x AKxy. (5)

The optimization problem (4)-(5) can be solved by writing
(4) as a generalized eigen-decomposition problem and in-
jecting the resulting matrix in (5). As we notice that both
expressions contain the matrixT = K⊤

x A, we propose to
solve the following equivalent optimization problem :

min
T

‖Px − T Kx‖
2
F , and Pxy = TKxy. (6)

This is a linear problem yieldingT = PxK−1
x , and thus

Pxy = Px K−1
x Kxy. (7)

3. SENSOR POSITION ESTIMATION

After estimating the matrixPxy of inner products of posi-
tions between beacons and sensors, one has to find the co-
ordinates of the latter. For this purpose, we take advantage



of the Nyström method, initially developed in the machine
learning community to approximate a matrix by another ma-
trix of lower rank [12]. In our case, on the one hand we have
by constructionPx = XX⊤, thus ad-rank matrix. From
its eigen-decomposition, we have

Px = Ud Λd U⊤

d ,

whereΛd is a diagonal matrix of thed nonzero eigenval-
ues ofPx, andUd the matrix whose columns are the corre-
sponding eigenvectors. By identification, we get

X = Ud (Λd)
1/2 (8)

On the other hand, we can writePxy = XY⊤ whereY is
the coordinate matrix to be identified. By injecting (8) into
this definition, we get the coordinates of them sensors from

Y⊤ = (Λd)
−1/2 U⊤

d Pxy. (9)

Since the resulting coordinates are determined in the space
defined by the eigenvectors, one must conduct a final step of
mapping them, with a linear (or affine to be more precise)
transformation, into the initial space of beacons. Such step
is commun to MDS techniques.

4. DISTRIBUTED ALGORITHM

In section 2, we considered completing the inner-product
matrix by inverting the ranging matrix of the beacons. This
stipulates that the beacons communicate to each other, in
a peer-to-peer fashion or a multi-hop strategy. However,
in practice, beacons may not be in the range of each other.
Moreover, the matrices may become too cumbersome to in-
vert and manipulate for a large scale sensor network. To
overcome this problem, we propose a distributed algorithm,
where each sensor gets information from nearby beacons in
order to find its own position. In other words, any sensori
defines a set of neighboring1 beacons with a submatrix of
Kx and its counterpart inPx, denoted respectivelyKi and
Pi, andXi the corresponding coordinates. While the global
optimization problem (6) leads to expression (7), by consid-
ering the distributed approach, we get

pi = Pi K−1
i κi, (10)

wherepi is the inner-product column vector of positions
between sensori and its nearby beacons, andκi the column
vector of ranging between them.

The corresponding coordinates of this sensor can be re-
vealed by writinglocally the expression (9), obtained from

1Different strategies can be proposed to define the neighborhood of a
sensor. This can be done by examining the ranging values, where high
values correspond to neighbors. We fix their number in simulations.

for each sensori
Find the nearby beacons [dump,ind]=sort(K(i,1:n))
Consider the closes nc beacons ind=ind(end:-1:end-nc+1)
Get ranging between these beaconsKi=K(ind,ind)
Get inner products between them Pi=Xn(ind,:)*Xn(ind,:)’
Consider ranging with them ki=K(i,ind)
Compute inner products with (10) pi=Pi*inv(Ki)*ki
Determine position with (11) y=pi/(Xn(ind,:)’)

Table 1. Pseudocode of the distributed algorithm.

an eigen-decomposition problem. Then, a mapping trans-
formation must be carried out as presented above, by con-
sidering this time only neighboring beacons. While this be-
comes fairly cumbersome for each sensor, we propose an
alternative approach to find the coordinates, based on the
pseudoinverse operator. For this purpose, we rewrite the
problem as the following optimization problem

min
y

‖pi − Xi y⊤‖2
F .

It is well known that the solution of this linear system is
given by the left pseudoinverse of the matrixXi, with

y =
(
X⊤

i Xi

)−1
X⊤

i pi. (11)

We emphasize on the fact that we don’t need to apply a map-
ping to localize the sensors with respect to beacons. The
simplicity of the algorithm is illustrated in Table 1.

5. SIMULATIONS

To illustrate our method, we consider a configuration similar
to the one proposed in [13], with ranging between two sen-
sors is only a function of the distance between them, with
κ(xi, xj) = exp

(
−‖xi − xj‖

2/2σ2
)
, whereσ is a param-

eter corresponding to the range of the sensors. Next, sensors
are randomly spread on a 1-by-1 square region.
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Fig. 1. Root-mean-square error on positions with the cen-
tralized algorithm, as a function ofn andσ.



Fig. 2. Topology constructed by the centralized algorithm.
The beacons are represented by�, sensors positions by+,
and their estimations by◦.

In a first series of experiments, we apply the centralized
algorithm to a network of 200 sensors, and study the in-
fluence of both the number of beacons and the range pa-
rameter. For this, we taken = 3, 4, . . . , 20 and σ =
0.1, 0.2, . . . , 0.9. In Fig. 1, we plot the resulting root-
mean-square error, averaged over 100 trials. As expected,
the localization error decreases as the number of beacons
increases, and the visibility between sensors is high. By
taking for instance 15 beacons (almost 7% of the sensors),
andσ = 0.75, we get the topology illustrated in Fig. 2.

In a second experiment, we consider a large scale network
of 1000 sensors of low range, withσ = 0.3. We deploy
also 50 beacons with the same characteristics. This setting
results in inverting and manipulating large sparse matrices,
since there is low visibility between these entities. For these
reasons, we consider the distributed algorithm, each sensor
determines its coordinates with information from the 5 clos-
est beacons. Fig. 3 illustrates the resulting topology, with a
root-mean-square error of 0.018.

Fig. 3. Topology constructed by the distributed algorithm
for a large scale network (same legend as Fig. 2).

6. CONCLUSION

In this paper, we took advantage of recent works in ker-
nel machines for solving the localization problem in sensor
networks. We showed that the matrix regression method
allows us to estimate unknown positions of sensors. We
derived a distributed algorithm, based on information from
local neighborhood of each sensor. There are several direc-
tions for further research, including mobile ad hoc network
(MANet), with an iterative update of the coordinates.
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