Distributed prediction of time series data with kernels
and adaptive filtering technigues in sensor networks

Paul Honeing& Cédric Richard, José Carlos M. Bermudéand Hichem Snousisi
T Institut Charles Delaunay (ICD, FRE CNRS 2848), LaboratdiM2S
Université de Technologie de Troyes, BP 2060, 10010 Treyesnce
{paul.honeine, cedric.richard, hichem.snop&siitt.fr
§ Department of Electrical Engineering
Federal University of Santa Catarina 88040-900, Flonatis, SC - Brazil
j-bermudez@ieee.org

Abstract—Wireless sensor networks are becoming versatile neighbors, they may collaborate with each other to learn the
tools for learning a physical phenomenon, monitoring its ve-  gverall physical phenomenon in each location in the region,
ations and predicting its evolution. They rely on low-cost iy g5 the measurements as well as the locations of the sensors
devices which are deployed in the region under scrutiny and .
collaborate with each other. Limited computation and communi- As opposed to a fgsmn cgnter approach where sensors only
cation resources require special care in designing distrioted pre- S€nse and convey information, here we hsrertsensors. A
diction algorithms for sensor networks. In this communicaion, common learning scheme consists of updating the model, at
we propose a nonlinear prediction technique that takes advatage  each sensor in turn, with the newly acquired data, and fatsvar
of recent developments in kernel machines and adaptive filteng information to another nearby sensor.

for online nonlinear functional learning. Conventional methods, One can take advantage of adaptive learning. as preconized
however, are inappropriate for large-scale sensor networg, as the Vv g puv Ing, P 1z

resulting model corresponds to the number of deployed sensn DY the vast literature on adaptive filtering techniques [2],
To circumvent these drawbacks, we consider a distributed attrol ~ However, most of these are linear signal processing tedkesiq

of the model order. The model parameters are transmitted fron inappropriate for the inherent nonlinear nature of the wide

sensor to sensor and updated by each sensor based the measure;|55g of systems under investigation. Nonlinear techrsigue
ment information. The model order is incremented whenever

this increment is relevant compared to a reduced-order mode P€COMING more widely investigated thanks to recent develop
The proposed approach is naturally adapted for predicting a Ments in machine learning, and more specifically with kernel
varying phenomenon, as model order increases are governed/b machines; See for instance [4] for a review of kernel methods
the novelty of the new observation at each sensor node. WeMost of these techniques are nonlinear analysis and priogess
illustrate the applicability of the proposed technique by ®me acpniques obtained by revisiting linear ones in the light o
simulations on establishing the temperature map in an regio - . . L
heated by sources. reproducmg kernel Hilbert spaces. There is a growing c_mEr
around this concept for data mining and machine intelligenc
|. INTRODUCTION since recent burst of Vapnik’'s support vector machines and
Wireless sensor networks (WSN) are becoming a multidistatistical learning theory [5]. While most kernel mactsine
ciplinary research area attracting researchers from mlieco Yield optimal solutions, they are not established in the esam
tronics, communication and signal processing communitidie as online learning, as the order of the resulting model
only to name a few. Mainly motivated by military applicatgn grows along with the number of available observations.
they are appropriate for a broad class of applicationstidinb In this paper, we propose a nonlinear kernel-based adap-
monitoring physical or environmental conditions, such d&e method, applied here for WSN, by bridging the gap
temperature, humidity or pollutants for supervising ani-agbetween the nonlinear kernel machines and adaptive figterin
cultural field at different locations. They rely on tiny degs techniques. In [6], [7], we have proposed to control the
with sensing capabilities, communicating wirelessly vatch order of the resulting model, with the pre-processing Kerne
other. In order to cover a large spatial region of interestign coherence criterion, and revisited in [8] for learning with
number of these devices (simply denoted as sensors hejealféSN. Nevertheless, such criterion is used prior to any legrn
are deployed randomly, restricting the manufacturing eést Scheme, and is independent of the prediction error. Here, we
each one. This leads to resource-constraint sensorsjngmitrevisit this criterion to propose a post-processing doter
the complexity of the algorithm run on each one. the functional-coherence criterion, which is applied t@ th
Sensors are mainly deployed to get some measurementieatnt function, thus taking into account the predictioroer
known (random) locatiorsin the region under scrutiny. SinceThe rest of this paper is organized as follows. In section
communication between sensors is possible, at least betw#e learning in a RKHS is briefly introduced, with focus on
functional leaning. In section Ill, we derive techniques to
'Even when deployed randomly, we assume that each sensaaiole  control the order. Then the proposed method is studied in
aware, with coordinates obtained by a self-localizatioe-gocessing tech- . . . . .
nique, as illustrated in [1] and references therein. Moeeomost applications S€Ction IV. Simulation results are reported in section W an
involve motionless devices. finally, conclusion remarks are summarized in section VI.



Il. FUNCTIONAL LEARNING WITH KERNEL MACHINES Polynomial - w(z;, @;) = (@i, @;) + B
Laplace Kz, z;) = exp (—|l@; — x;||/0F)
In order to understand the nature of functional learning Gaussian  rk(wi, ;) = exp (|| — x[*/207)
with kernel machines, it will be useful first to take a look TABLE |
at a conventional least-squares problem for fitting datd. LeSOME REPRODUCING KERNELSWITH TUNABLE PARAMETERS 3, p, 00.

(x1,d1), (x2,d2), ..., (x,,d,) be a set ofn training pairs,

wherex; is an input example drawn from a vector-spake

and d; € D is the desired observation or label associateig a functions
to it. The goal is to learn a map fro® to D given the
training set, and therefore getting the appropriafer any . .
Mathematically, the mapping or systeconnectingthe two  ° the functions(a;, -), belongs tof for all x; € X,

spaces is modeled by a function, say When the labels _° zp(_mi) = {w(@i, ), Y)n for all z; € X andy € H

take values in a finite set, the task is called classification 6h€ Hilbert spacei{ associated with this kernel is called a
discrimination. In a more general settfagvhenD = IR we reproducmg kernel Hilbert space (RKHS): The last property
have a regression problem whekecorresponds to the desired’S @ fundamental property of RKHS, which states that the
output of the systemy for the inputz;. The optimal function €valuation of a function) € 7 in that space at any; € ' is

»* is obtained by minimizing some cost functional on thgiven by its inner productW|_th the functiot(x;, -). Moreover,
available training set, such as the mean square error, bipgol ©N€ can write for the particular case = r(z;,-) for any

the optimization problem a; € X the property(s(x;, ), k(x;, -))n = (@i, ;). There-
fore, k(x;, z;) corresponds to an inner product between data
in a modifiedor transformedspace. Back to the optimization
problem (1) and its linear counterpart (2) applied to the F¥H

we get the following optimization problem
However, this is an ill-posed problem, as an infinite numider o

n
functions sets to zero this cost functional. In order to wbéa Y* = arg min Z [(x:) — di® + 77H¢||31- 3)
well-posed problem, one must restrict the space of carglidat YeEH —

funct?ons into for ins_tance linear, quadratic, or polynami | his expression, we use a Tikhonov regularization with
fun<_:t|ons or even splines. . [0, 1], allowing a tradeoff between the well-fithess to the data

Linear functions are conceptually easy and simple to '”_%fhe first term in the above cost function) and the regularity
plement, as preconized by the large literature on adaptiy e resulting function (the second term). It is worth ngti
filtering techniques [2], [3]. For this purpose, we restrich,; e get a linear-function problem (2) by considering the
ourselves to functiong defined by a vecton € X such.that linear reproducing kemet(a;, z;) = (x;,z;). Nonlinearity
U(x) = (a, ) for any z € X, where(.,-) is the usual inner g 4chieved by substituting the inner product by a nonlinear
product in a vector space. Thus, the optimization problem ignoqucing kernel as defined in Table 1, leaving the albarit
reduced to determine the vectat by solving unchanged and incurring essentially the same computationa
cost.

(z;,x;) from X x X to R that verifies both
properties:

Yt = argnﬁnz (@) — dil. 1)

i=1

)

2
‘ ' IIl. M ODEL ORDER CONTROL FOR ONLINE LEARNING

By virtue of the well known Representer Theorem [9], [10],

_Th|s optimal vector can be 'eaT”t recurs_|vely_|n an onllrmrtg solutions to the regularized optimization problem (3) hthe
ing scheme as suggested with adaptive filtering techniques

. ; . - form
where at each time-instaneewe have a new observation pair n
(x,,d,). Nevertheless, this optimization problem may still be P = Za;‘- K(xj, ), 4)
ill-posed, and some structure of the candidates veetaraist j=1
be required, taking into account for instance the regylait where the order of the model corresponds to the number of
the system as well as the noisy measurements. Moreoveryjhilable data. By analogy to the linear case defined in (2),
is worth noting that, by their nature, such linear functiane ; are substituted here by their corresponding kernel funstio
not suitable to nonlinear analysis and prediction. k(x;,-), anda* by the functiony* defined in (4). Inserting

In this paper, we take advantage of recent developmetiits model into (3) leads to the following optimization prob
in the area of nonlinear functional learning, with kerngem:

machines. The space of candidate functions is constructed o o = argmin||d — Ka|? + na' Ka,

the underlying structure of reproducing kernel functioas, @

defined next. LetH, (- ,-)») denotes a Hilbert space of realwherea andd are n-dimensional column vectors of entries

valued functions defined of’. A reproducing kernel of{ o anddi, respectively, ands is the n-by-n (Gram) matrix
of entriesk(xz;, z;), for i, = 1,...,n. From classical matrix

2An even more general setting consists®f= IR¢ or evenD = ¢?, algebra, we get the solution to this well known problem with
however such straightforward generalization is beyond sbepe of this
communication. (K +nl)a" =d,

n
a® = argmin E ‘(a,ccz) —d;
a
i=1



with I the identity matrix of appropriate size. Therefore, In [7], we derive the connection between both criteria
this requires the inversion of the matriX + nI, which is (6) and (7). These criteria consider the most compact rep-
warrantable thanks to a non-zero regularization consfant resentation (9) that approximates well the optimal modgl (4
In an online setting, we have a new data pair,,d,,) at However, they do not take into account the observatign

each instant:, and the model is updated recursively baseassociated to<(x,,-), neither the prediction error. This is
on this new information. However, considering a model ahainly due to the pre-processing nature of the approach,
the form (4), its order will steadily increasing. In order t@s selection occurs before any computation of the resulting
circumvent this inconvenience, we propose to control itkar model, with and without the kernel functiot(x,,, ).

This is done by retaining only a small number of kern

functions in the expansion (4), say, and write eé The functional-coherence criterion, a post-processirig

terion
m
Uy = Z g KT, ) 5) The kernel-coherence criterion mentioned above, as defined
= § in (7), determines the relevance of the informatiom{a,,, -),

\1vith respect to all previous kernel functions in the expansi

where wi,...,wn are the indexes of the retained kern ‘e propose to revisit this principle, and apply it to the fgar

functions, from then available ones. The selection criterio . . . .
: . . : unction. For now, consider that the functign, is computed
determines if, at instant, the kernel functiork(x,,, -) should " T )
Wléh an expansion including(x,,,-). We propose to reduce

be included to the expansion, or discarded, or even reMOvEd model order by discarding this kernel functiom)jf is not

if it already belongs to it. Therefore, the model order ma ery relevant, compared to previous computed functionth wi
increment, stay unchanged, or decrement. In [6], [8], [7], y ’ P P P

we derived an easy to compute criterion applied in a pre- (Vs Vi) /

processing scheme, independently of the resulting optimal T ([0 |2 |20k | ¢ .

function as well as the prediction error. In order to circimts where . is the optimal function obtained at instaht This

thesl_e ((jjr_awbacks, we mvgstlgatﬁ n thlsfpaper a ne\r/1v CMENiterion may be considered as an extension of (7), and in the
applied in a post-processing scheme, after getting thenapti same line of upper-bounding the cosine of the angles between

function and therefore is observation-aware as opposeleto Functions in order tespanthe largest subspace in the RKHS.

;ormer. Slnct:)e t_h"z Cr'“;”,o? follows fthr? sfame spirit of theys spposed to (7), this criterion considers the whole learnt
ormer, we begin by a brief review of the former criterion. ¢, qtion, including its prediction error, and not only iterkel

A. The kernel-coherence criterion, a pre-processing dote €xpansion. While this requires keeping all previously rear

- -functions, we derive a sufficient condition by considerihg t
In this first approach, we seek a compact representation, ~ .
SO dcnterlon
where the current kernel function is discarded from the rhodé (W, h:E ) )
expansion when it can be well approximated by the already 7”#’ HHH;lHH >y,
available ones. This can be done by comparifig,,,-) to " "

its projection onto the space spanned by the othekernel for a given thresholdv; € [0,1], and wherey, is the

functions, yielding the following optimization problem orthogonal projection of),, onto the space spanned by the
m n — 1 functions. Moreover, we don’t need to keep all these
min || (@, ) — Z%, K@y, ) |2 < V2, (6) functions in memory, since this space is also spanned by the

retained kernel functions. In the next section, we propose a
learning algorithm, where this criterion is applied at thwl e

in order to determine which af,, or 1);- must be considered
as the resulting optimal function, based on this measure of
coherence between them.

j=1
for a given threshold,. From matrix algebra, this is solved
by an inversion of them-by-m Gram matrix of entries
K(xy,, x,,) fori,j =1,...,m, as given for instance in [11],
and thus has a computational complexity@fmn?). In [6], [7],
we consider the following more efficient criterion. We dista IV. DISTRIBUTED FUNCTIONAL LEARNING IN WSN

#(zn,-) from the expansion if, for a given threshald, we  consider the problem of functional learning in wireless
have sensor networks (WSN), such as estimating a temperatude fiel
|<I€(mn,-),li(.’1}w].,~)>7-(| i . . . i
~max > vy, (7) for instance, where the input of the function is the coortiina
7=l || (@, )|l (e, )l in the region under scrutiny, and its output is estimatecpesm
In other terms, this corresponds to upper-bounding theneosature. We learn the optimal function from sensors deployed i
of the angles between the kernel functions in the resultinigis region, giving us measurements at known location<eSin
expansion. For a small threshold value, we get a set mibst considered techniques are iterative, this paper isnot
incoherent kernel functions, and orthogonality whan= 0; exception, more than one pass through the network may be
we call this criterion the kernel-coherence criterion. sThirequired in order to converge to the optimal solution, ad wel
criterion is very efficient from a computational point of wie as in case of tracking the evolution of the system.
since the numerator of (7) is given Oy (x,,z.,)| and its In [8], we derived a distributed regression technique based
denominator is\/m(mn, X)) K (Lo, , Two; ) on the kernel-coherence criterion. However, this criterio




depends only on the location of the sensats, thus the this expression in the first condition, we get the recursive

model is fixed for a given deployment for a the large class apdate

motionless-sensor problem (at least after the first passigftr p

the network), and only the weighting coefficients are updlate Qp = Qp—1 + m kn

The functional-coherence criterion allows us to overcohig t

drawback, since it looks at the functions where the preaticti Where p is step-size control parameter, preconised in the

error is considered in the iterative updating scheme. Tragaptive filtering literature, and where we reintroduce the

approach is illustrated in this paper, with a kernel-based n regularization parameter. In this expressiond,, — o, _;x»

malized least-mean-squares (NLMS) technique derived. nex@orresponds to the prediction error resulting from the jores
Consider the optimization problem (3), whegeis substi- model.

tuted by the reduced-order model (9). Each sensor, in tuw2

updates the model,, with the newly acquired datd, and

forward information to another nearby sensor, and so on. Theln this case, we increment the model order by including this

(dn — 0ty _1kn),  (8)

. if k(x,,-) does not belong to the model

following actions are performed: kernel function to the expansion, yielding the model

A. An updating parameter stage, with or without changing m
the model order depending on whethétr,,, -) does not Yy = Zan,k F(Twyy ') + Wnmt1 £(2n, +). 9)
belong to the the model expansion, or it already belongs. k=1
The model resulting from this stage,, incorporates this \wjith one more coefficient and kernel function, the minimum-
kernel function. Letm + 1 be its order. deviation problem becomes

B. A projection stage, where we computg , the projection
of ¢,, onto the space with one removed kernel function, Hgn [tim) — anall® + a4y

#(x,, ). The resulting modek);- does not include the
latter. Its order ism.
C. A model order reduction stage, by considering as a finghere ., denotes the first m  entries  of

subject to a' Kk, =d,,

model,| rather thamny,,, if vector a« = [ai - m  amy1]', and k, =
(W, ) (F(@oy,@0) - K@, 20) Al a,)] . Similarly to
Ln > . Al, we get the recursive updating

[Onll7llebm Il
Next, we develop each of these stages, while the first stagg, — [ Qn—1 } i P . (dn _ HT[ Q-1 D
is decomposed into two cases, depending if the current kerne 0 n+[lkall? " 0
function already belongs to the model, or not. For the sake of
simplicity, we begin by developing the algorithm fgr= 0 in B. Projection stage
both cases, and introduce the regularization parametdreat t T )
end of each. In order to simplify the notations, let(z.,,.,,-) be the
current kernel function, i.en = w,, 41 Let w# be the
Al. if K(zy, ) already belongs to the model orthogonal projection ofy,, onto the space spanned by the
Wﬂ?out changing the model order, defined hy, = otherm kernel functions, obtained by solving
vk (T, , -), We consider updating the coefficients, )
ozn]fk,lby solvgng kthe) following minimum-deviation problem (K@, ) tn = ) =0 forall  j=1,....m.

(10)

min o — a1 |2 Since we havey, = Y7, B, k(x,,;,-), this is done by

. solving them-by-m linear system

subjectto o' k, = d,,

wherek,, = [k(@u,, @) - K(x,, ,,@,)] |, and the result- Koo =0, )

ing av,, is a column vector of entries,, , fork =1,...,m+1. whereg, and, are m-element column vectors of entries
This constraint is equivalent t@g,,(x,) = d,. To solve the [, ; andiy,(x.,) for j =1,...,m, respectively, andK,, is
constraint optimization problem, we write the Lagrangian them-by-m matrix of entriess(x.,,, x.,) fori,j =1,...,m.

It is worth noting that we can make use of a rank one update
for the matrix inversion process.

where X denotes the Lagrangian multiplier. By taking to zerg )

its derivatives with respect tax and A, we get the two C- Model order reduction stage

e = an 1| + Adn — @' ky)

conditions onea,,: In both cases, Al. and A2., the resulting model includes the
1. . kernel functions(x,,, -). Now we are in a position to reduce
Qp — Qp—1 = 5/\"% and  a,kn=dy the model order, by using;- instead ofi),, if
From these conditions am,,_;, we get\ = 2(k, k,,) " (d,, — (n, i )m /

o) K,), wherek k,, is assumed non-singular. By injecting (Wl 71 7 =i
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Fig. 1. The evolution of the model at= 1, ¢t = 2, andt¢ = 20, with contour lines. The blue dots and the big-red dots gmethe sensors and those
contributing to the model, respectively.

otherwise, we keep),, as the final model. Letv,, be the diffusion operates mainly in the-direction, our model follows

column vector of the weighting coefficients, obtained frorthis anisotropic diffusion. This is illustrated by the cout

(8) or (10). Then, this criterion is equivalent to lines in Figure 1, as well as with the (big-red) selected sens
(@l e,)? defining the model, spanning the region under evolution

> ViQ,

o) Koo, v K ', VI. CONCLUSION

where relation (11) is used. This paper introduces a new criterion to control the model

order of kernel machines. Compared to previously proposed
V. SIMULATIONS criterion which are applied prior to any learning task and

In order to illustrate our approach, we consider the probleimidependent of the observations, this functional-cohsgen

of monitoring diffusion phenomena governed by the generigiterion operates on the learnt function. It can be regérde

partial differential equation as a measure of coherence between the learnt function and it
oC (. t) projection onto a smaller-dimension space, which detezmin
5 V(DVC(z,t)) = Q(z, 1) if we keep the function or its projection as the final result.
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