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Université de Technologie de Troyes, BP 2060, 10010 Troyes- France

{paul.honeine, cedric.richard, hichem.snoussi}@utt.fr
§ Department of Electrical Engineering

Federal University of Santa Catarina 88040-900, Florianópolis, SC - Brazil
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Abstract—Wireless sensor networks are becoming versatile
tools for learning a physical phenomenon, monitoring its vari-
ations and predicting its evolution. They rely on low-cost tiny
devices which are deployed in the region under scrutiny and
collaborate with each other. Limited computation and communi-
cation resources require special care in designing distributed pre-
diction algorithms for sensor networks. In this communication,
we propose a nonlinear prediction technique that takes advantage
of recent developments in kernel machines and adaptive filtering
for online nonlinear functional learning. Conventional methods,
however, are inappropriate for large-scale sensor networks, as the
resulting model corresponds to the number of deployed sensors.
To circumvent these drawbacks, we consider a distributed control
of the model order. The model parameters are transmitted from
sensor to sensor and updated by each sensor based the measure-
ment information. The model order is incremented whenever
this increment is relevant compared to a reduced-order model.
The proposed approach is naturally adapted for predicting a
varying phenomenon, as model order increases are governed by
the novelty of the new observation at each sensor node. We
illustrate the applicability of the proposed technique by some
simulations on establishing the temperature map in an region
heated by sources.

I. I NTRODUCTION

Wireless sensor networks (WSN) are becoming a multidis-
ciplinary research area attracting researchers from microelec-
tronics, communication and signal processing communities,
only to name a few. Mainly motivated by military applications,
they are appropriate for a broad class of applications, including
monitoring physical or environmental conditions, such as
temperature, humidity or pollutants for supervising an agri-
cultural field at different locations. They rely on tiny devices
with sensing capabilities, communicating wirelessly witheach
other. In order to cover a large spatial region of interest, abig
number of these devices (simply denoted as sensors hereafter)
are deployed randomly, restricting the manufacturing costof
each one. This leads to resource-constraint sensors, limiting
the complexity of the algorithm run on each one.

Sensors are mainly deployed to get some measurements at
known (random) locations1 in the region under scrutiny. Since
communication between sensors is possible, at least between

1Even when deployed randomly, we assume that each sensor is location-
aware, with coordinates obtained by a self-localization pre-processing tech-
nique, as illustrated in [1] and references therein. Moreover, most applications
involve motionless devices.

neighbors, they may collaborate with each other to learn the
overall physical phenomenon in each location in the region,
from the measurements as well as the locations of the sensors.
As opposed to a fusion center approach where sensors only
sense and convey information, here we havesmartsensors. A
common learning scheme consists of updating the model, at
each sensor in turn, with the newly acquired data, and forwards
information to another nearby sensor.

One can take advantage of adaptive learning, as preconized
by the vast literature on adaptive filtering techniques [2],[3].
However, most of these are linear signal processing techniques,
inappropriate for the inherent nonlinear nature of the wide
class of systems under investigation. Nonlinear techniques are
becoming more widely investigated thanks to recent develop-
ments in machine learning, and more specifically with kernel
machines; See for instance [4] for a review of kernel methods.
Most of these techniques are nonlinear analysis and processing
techniques obtained by revisiting linear ones in the light of
reproducing kernel Hilbert spaces. There is a growing interest
around this concept for data mining and machine intelligence,
since recent burst of Vapnik’s support vector machines and
statistical learning theory [5]. While most kernel machines
yield optimal solutions, they are not established in the same
line as online learning, as the order of the resulting model
grows along with the number of available observations.

In this paper, we propose a nonlinear kernel-based adap-
tive method, applied here for WSN, by bridging the gap
between the nonlinear kernel machines and adaptive filtering
techniques. In [6], [7], we have proposed to control the
order of the resulting model, with the pre-processing kernel-
coherence criterion, and revisited in [8] for learning with
WSN. Nevertheless, such criterion is used prior to any learning
scheme, and is independent of the prediction error. Here, we
revisit this criterion to propose a post-processing criterion,
the functional-coherence criterion, which is applied to the
learnt function, thus taking into account the prediction error.
The rest of this paper is organized as follows. In section
II, learning in a RKHS is briefly introduced, with focus on
functional leaning. In section III, we derive techniques to
control the order. Then the proposed method is studied in
section IV. Simulation results are reported in section V, and
finally, conclusion remarks are summarized in section VI.



II. FUNCTIONAL LEARNING WITH KERNEL MACHINES

In order to understand the nature of functional learning
with kernel machines, it will be useful first to take a look
at a conventional least-squares problem for fitting data. Let
(x1, d1), (x2, d2), . . . , (xn, dn) be a set ofn training pairs,
wherexi is an input example drawn from a vector-spaceX ,
and di ∈ D is the desired observation or label associated
to it. The goal is to learn a map fromX to D given the
training set, and therefore getting the appropriated for anyx.
Mathematically, the mapping or systemconnectingthe two
spaces is modeled by a function, sayψ. When the labels
take values in a finite set, the task is called classification or
discrimination. In a more general setting2, whenD = IR we
have a regression problem wheredi corresponds to the desired
output of the systemψ for the inputxi. The optimal function
ψ∗ is obtained by minimizing some cost functional on the
available training set, such as the mean square error, by solving
the optimization problem

ψ∗ = arg min
ψ

n
∑

i=1

|ψ(xi) − di|
2. (1)

However, this is an ill-posed problem, as an infinite number of
functions sets to zero this cost functional. In order to obtain a
well-posed problem, one must restrict the space of candidate
functions into for instance linear, quadratic, or polynomial
functions or even splines.

Linear functions are conceptually easy and simple to im-
plement, as preconized by the large literature on adaptive
filtering techniques [2], [3]. For this purpose, we restrict
ourselves to functionsψ defined by a vectora ∈ X such that
ψ(x) = 〈a,x〉 for anyx ∈ X , where〈·, ·〉 is the usual inner
product in a vector space. Thus, the optimization problem is
reduced to determine the vectora∗ by solving

a∗ = arg min
a

n
∑

i=1

∣

∣〈a,xi〉 − di
∣

∣

2
, (2)

This optimal vector can be learnt recursively in an online learn-
ing scheme as suggested with adaptive filtering techniques,
where at each time-instancen we have a new observation pair
(xn, dn). Nevertheless, this optimization problem may still be
ill-posed, and some structure of the candidates vectorsa must
be required, taking into account for instance the regularity of
the system as well as the noisy measurements. Moreover, it
is worth noting that, by their nature, such linear functionsare
not suitable to nonlinear analysis and prediction.

In this paper, we take advantage of recent developments
in the area of nonlinear functional learning, with kernel
machines. The space of candidate functions is constructed on
the underlying structure of reproducing kernel functions,as
defined next. Let(H, 〈· , ·〉H) denotes a Hilbert space of real-
valued functions defined onX . A reproducing kernel ofH

2An even more general setting consists ofD = IRd or evenD = lCd,
however such straightforward generalization is beyond thescope of this
communication.

Polynomial κ(xi, xj) = (〈xi, xj〉 + β2)p

Laplace κ(xi, xj) = exp
`

−‖xi − xj‖/σ2

0

´

Gaussian κ(xi, xj) = exp
`

−‖xi − xj‖2/2σ2

0

´

TABLE I
SOME REPRODUCING KERNELS, WITH TUNABLE PARAMETERSβ, p, σ0 .

is a functionκ(xi,xj) from X × X to IR that verifies both
properties:

• the functionκ(xi, ·), belongs toH for all xi ∈ X ,
• ψ(xi) = 〈κ(xi, ·), ψ〉H for all xi ∈ X andψ ∈ H.

The Hilbert spaceH associated with this kernel is called a
reproducing kernel Hilbert space (RKHS). The last property
is a fundamental property of RKHS, which states that the
evaluation of a functionψ ∈ H in that space at anyxi ∈ X is
given by its inner product with the functionκ(xi, ·). Moreover,
one can write for the particular caseψ = κ(xj , ·) for any
xj ∈ X the property〈κ(xi, ·), κ(xj , ·)〉H = κ(xi,xj). There-
fore, κ(xi,xj) corresponds to an inner product between data
in a modifiedor transformedspace. Back to the optimization
problem (1) and its linear counterpart (2) applied to the RKHS,
we get the following optimization problem

ψ∗ = arg min
ψ∈H

n
∑

i=1

|ψ(xi) − di|
2 + η‖ψ‖2

H. (3)

In this expression, we use a Tikhonov regularization withη ∈
[0, 1], allowing a tradeoff between the well-fitness to the data
(the first term in the above cost function) and the regularity
of the resulting function (the second term). It is worth noting
that we get a linear-function problem (2) by considering the
linear reproducing kernelκ(xi,xj) = 〈xi,xj〉. Nonlinearity
is achieved by substituting the inner product by a nonlinear
reproducing kernel as defined in Table I, leaving the algorithm
unchanged and incurring essentially the same computational
cost.

III. M ODEL ORDER CONTROL FOR ONLINE LEARNING

By virtue of the well known Representer Theorem [9], [10],
solutions to the regularized optimization problem (3) havethe
form

ψ∗ =

n
∑

j=1

α∗
j κ(xj , ·), (4)

where the order of the model corresponds to the number of
available data. By analogy to the linear case defined in (2),
xi are substituted here by their corresponding kernel functions
κ(xi, ·), anda∗ by the functionψ∗ defined in (4). Inserting
this model into (3) leads to the following optimization prob-
lem:

α∗ = argmin
α

‖d−Kα‖2 + ηα⊤Kα,

whereα andd aren-dimensional column vectors of entries
αk anddk, respectively, andK is then-by-n (Gram) matrix
of entriesκ(xi,xj), for i, j = 1, . . . , n. From classical matrix
algebra, we get the solution to this well known problem with

(K + ηI)α∗ = d,



with I the identity matrix of appropriate size. Therefore,
this requires the inversion of the matrixK + ηI, which is
warrantable thanks to a non-zero regularization constantη.

In an online setting, we have a new data pair(xn, dn) at
each instantn, and the model is updated recursively based
on this new information. However, considering a model of
the form (4), its order will steadily increasing. In order to
circumvent this inconvenience, we propose to control its order.
This is done by retaining only a small number of kernel
functions in the expansion (4), saym, and write

ψn =

m
∑

k=1

αn,k κ(xωk
, ·), (5)

where ω1, . . . , ωm are the indexes of the retained kernel
functions, from then available ones. The selection criterion
determines if, at instantn, the kernel functionκ(xn, ·) should
be included to the expansion, or discarded, or even removed
if it already belongs to it. Therefore, the model order may
increment, stay unchanged, or decrement. In [6], [8], [7],
we derived an easy to compute criterion applied in a pre-
processing scheme, independently of the resulting optimal
function as well as the prediction error. In order to circumvent
these drawbacks, we investigate in this paper a new criterion
applied in a post-processing scheme, after getting the optimal
function and therefore is observation-aware as opposed to the
former. Since this criterion follows the same spirit of the
former, we begin by a brief review of the former criterion.

A. The kernel-coherence criterion, a pre-processing criterion

In this first approach, we seek a compact representation,
where the current kernel function is discarded from the model
expansion when it can be well approximated by the already
available ones. This can be done by comparingκ(xn, ·) to
its projection onto the space spanned by the otherm kernel
functions, yielding the following optimization problem

min
γ

‖κ(xn, ·) −

m
∑

j=1

γj κ(xωj
, ·)‖2

H < ν2
0 , (6)

for a given thresholdν0. From matrix algebra, this is solved
by an inversion of them-by-m Gram matrix of entries
κ(xωi

,xωj
) for i, j = 1, . . . ,m, as given for instance in [11],

and thus has a computational complexity ofO(m3). In [6], [7],
we consider the following more efficient criterion. We discard
κ(xn, ·) from the expansion if, for a given thresholdν1, we
have

max
j=1,...,m

|〈κ(xn, ·), κ(xωj
, ·)〉H|

‖κ(xn, ·)‖H‖κ(xωj
, ·)‖H

> ν1. (7)

In other terms, this corresponds to upper-bounding the cosine
of the angles between the kernel functions in the resulting
expansion. For a small threshold value, we get a set of
incoherent kernel functions, and orthogonality whenν1 = 0;
we call this criterion the kernel-coherence criterion. This
criterion is very efficient from a computational point of view,
since the numerator of (7) is given by|κ(xn,xωj

)| and its
denominator is

√

κ(xn,xn)κ(xωj
,xωj

).

In [7], we derive the connection between both criteria
(6) and (7). These criteria consider the most compact rep-
resentation (9) that approximates well the optimal model (4).
However, they do not take into account the observationdn
associated toκ(xn, ·), neither the prediction error. This is
mainly due to the pre-processing nature of the approach,
as selection occurs before any computation of the resulting
model, with and without the kernel functionκ(xn, ·).

B. The functional-coherence criterion, a post-processingcri-
terion

The kernel-coherence criterion mentioned above, as defined
in (7), determines the relevance of the information inκ(xn, ·),
with respect to all previous kernel functions in the expansion.
We propose to revisit this principle, and apply it to the learnt
function. For now, consider that the functionψn is computed
with an expansion includingκ(xn, ·). We propose to reduce
the model order by discarding this kernel function ifψn is not
very relevant, compared to previous computed functions, with

max
k=1,...,n−1

〈ψn, ψk〉H
‖ψn‖H‖ψk‖H

> ν′0,

whereψk is the optimal function obtained at instantk. This
criterion may be considered as an extension of (7), and in the
same line of upper-bounding the cosine of the angles between
functions in order tospanthe largest subspace in the RKHS.
As opposed to (7), this criterion considers the whole learnt
function, including its prediction error, and not only its kernel
expansion. While this requires keeping all previously learnt
functions, we derive a sufficient condition by considering the
criterion

〈ψn, ψ
⊥
n 〉H

‖ψn‖H‖ψ⊥
n ‖H

> ν′1,

for a given thresholdν′1 ∈ [0, 1], and whereψ⊥
n is the

orthogonal projection ofψn onto the space spanned by the
n − 1 functions. Moreover, we don’t need to keep all these
functions in memory, since this space is also spanned by the
retained kernel functions. In the next section, we propose a
learning algorithm, where this criterion is applied at the end
in order to determine which ofψn or ψ⊥

n must be considered
as the resulting optimal function, based on this measure of
coherence between them.

IV. D ISTRIBUTED FUNCTIONAL LEARNING IN WSN

Consider the problem of functional learning in wireless
sensor networks (WSN), such as estimating a temperature field
for instance, where the input of the function is the coordinates
in the region under scrutiny, and its output is estimated temper-
ature. We learn the optimal function from sensors deployed in
this region, giving us measurements at known locations. Since
most considered techniques are iterative, this paper is notan
exception, more than one pass through the network may be
required in order to converge to the optimal solution, as well
as in case of tracking the evolution of the system.

In [8], we derived a distributed regression technique based
on the kernel-coherence criterion. However, this criterion



depends only on the location of the sensors,xn, thus the
model is fixed for a given deployment for a the large class of
motionless-sensor problem (at least after the first pass through
the network), and only the weighting coefficients are updated.
The functional-coherence criterion allows us to overcome this
drawback, since it looks at the functions where the prediction
error is considered in the iterative updating scheme. This
approach is illustrated in this paper, with a kernel-based nor-
malized least-mean-squares (NLMS) technique derived next.

Consider the optimization problem (3), whereψ is substi-
tuted by the reduced-order model (9). Each sensor, in turn,
updates the modelψn with the newly acquired datadn and
forward information to another nearby sensor, and so on. The
following actions are performed:
A. An updating parameter stage, with or without changing

the model order depending on whetherκ(xn, ·) does not
belong to the the model expansion, or it already belongs.
The model resulting from this stage,ψn incorporates this
kernel function. Letm+ 1 be its order.

B. A projection stage, where we computeψ⊤
n , the projection

of ψn onto the space with one removed kernel function,
κ(xn, ·). The resulting model,ψ⊥

n does not include the
latter. Its order ism.

C. A model order reduction stage, by considering as a final
modelψ⊤

n rather thanψn, if

〈ψn, ψ
⊥
n 〉H

‖ψn‖H‖ψ⊥
n ‖H

> ν′1.

Next, we develop each of these stages, while the first stage
is decomposed into two cases, depending if the current kernel
function already belongs to the model, or not. For the sake of
simplicity, we begin by developing the algorithm forη = 0 in
both cases, and introduce the regularization parameter at the
end of each.

A1. if κ(xn, ·) already belongs to the model

Without changing the model order, defined byψn =
∑m+1

k=1 αn,k κ(xωk
, ·), we consider updating the coefficients,

αn,k, by solving the following minimum-deviation problem

min
α

‖α−αn−1‖
2

subject to α⊤κn = dn,

whereκn =
[

κ(xω1
,xn) · · ·κ(xωm+1

,xn)
]⊤

, and the result-
ingαn is a column vector of entriesαn,k for k = 1, . . . ,m+1.
This constraint is equivalent toψn(xn) = dn. To solve the
constraint optimization problem, we write the Lagrangian

‖α−αn−1‖
2 + λ(dn −α⊤κn)

whereλ denotes the Lagrangian multiplier. By taking to zero
its derivatives with respect toα and λ, we get the two
conditions onαn:

αn −αn−1 =
1

2
λκ⊤

n and α⊤
nκn = dn

From these conditions onαn−1, we getλ = 2(κ⊤
nκn)

−1(dn−
α⊤
n−1κn), whereκ⊤

nκn is assumed non-singular. By injecting

this expression in the first condition, we get the recursive
update

αn = αn−1 +
ρ

η + ‖κn‖2
κn(dn −α⊤

n−1κn), (8)

where ρ is step-size control parameter, preconised in the
adaptive filtering literature, and where we reintroduce the
regularization parameterη. In this expression,dn − α⊤

n−1κn
corresponds to the prediction error resulting from the previous
model.

A2. if κ(xn, ·) does not belong to the model

In this case, we increment the model order by including this
kernel function to the expansion, yielding the model

ψn =

m
∑

k=1

αn,k κ(xωk
, ·) + αn,m+1 κ(xn, ·). (9)

With one more coefficient and kernel function, the minimum-
deviation problem becomes

min
α

‖α[1:m] −αn−1‖
2 + α2

m+1

subject to α⊤κn = dn,

where α[1:m] denotes the first m entries of
vector α = [α1 · · · αm αm+1]

⊤, and κn =
[κ(xω1

,xn) · · · κ(xωm
,xn) κ(xn,xn)]

⊤. Similarly to
A1, we get the recursive updating

αn =
[

αn−1

0

]

+
ρ

η + ‖κn‖2
κn

(

dn − κ⊤
n

[

αn−1

0

])

.

(10)

B. Projection stage

In order to simplify the notations, letκ(xωm+1
, ·) be the

current kernel function, i.e.n = ωm+1 Let ψ⊥
n be the

orthogonal projection ofψn onto the space spanned by the
otherm kernel functions, obtained by solving

〈κ(xωj
, ·), ψn − ψ⊥

n 〉H = 0 for all j = 1, . . . ,m.

Since we haveψ⊥
n =

∑m

j=1 βn,j κ(xωj
, ·), this is done by

solving them-by-m linear system

Kω βn = ψω, (11)

whereβn andψω arem-element column vectors of entries
βn,j andψn(xωj

) for j = 1, . . . ,m, respectively, andKω is
them-by-m matrix of entriesκ(xωi

,xωj
) for i, j = 1, . . . ,m.

It is worth noting that we can make use of a rank one update
for the matrix inversion process.

C. Model order reduction stage

In both cases, A1. and A2., the resulting model includes the
kernel functionκ(xn, ·). Now we are in a position to reduce
the model order, by usingψ⊥

n instead ofψn if

〈ψn, ψ
⊥
n 〉H

‖ψn‖H‖ψ⊥
n ‖H

> ν′1;
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Fig. 1. The evolution of the model att = 1, t = 2, and t = 20, with contour lines. The blue dots and the big-red dots represent the sensors and those
contributing to the model, respectively.

otherwise, we keepψn as the final model. Letαn be the
column vector of the weighting coefficients, obtained from
(8) or (10). Then, this criterion is equivalent to

(α⊤
nψω)2

α⊤
nKωαn ψ

⊤

ωK
−1
ω ψω

> ν′21 ,

where relation (11) is used.

V. SIMULATIONS

In order to illustrate our approach, we consider the problem
of monitoring diffusion phenomena governed by the generic
partial differential equation

∂C(x, t)

∂t
−∇(D∇C(x, t)) = Q(x, t)

with C the concentration as a function of location and time,Q
a volume source, which may depend on both location and time,
and the diffusion parameterD (scalar or matrix), depending on
the medium. WhenD is a constant, the diffusion is isotropic,
and whenD varies with direction, it is called anisotropic. In
this paper, we consider an anisotropic medium3, with several
concrete examples such as studying the behavior of a pollutant
concentration in the air in a windy environment, or monitoring
a contaminating agent in water resources where the water flow
takes part in its spread, in a given direction.

For this purpose, we consider 100 sensors in a fixed 2D
location, deployed randomly in the1.5-by-1.5 square region
under scrutiny. We study the evolution of the system from
t = 1 to t = 20, where at each instance we have one
new measurement per sensor. From results on preliminary
experiments done on instantt = 10, with 10 passes, we set
η = 0, ρ = 0.99 and ν′1 = 0.99. The commonly investigated
Gaussian kernel is used,κ(xi,xj) = exp(−‖xi − xj‖

2/2σ2),
with its bandwidth set toσ = 0.2.

Figure 1 illustrates the evolution of the resulting model,
at different time instances. We see that at time instantt =
1, we have a concentration within a given region. While the

3For simulations, we use the PDE toolbox of Matlab, withD a function
increasing with thex-coordinate, andQ a time-increasing source.

diffusion operates mainly in thex-direction, our model follows
this anisotropic diffusion. This is illustrated by the contour
lines in Figure 1, as well as with the (big-red) selected sensors
defining the model, spanning the region under evolution

VI. CONCLUSION

This paper introduces a new criterion to control the model
order of kernel machines. Compared to previously proposed
criterion which are applied prior to any learning task and
independent of the observations, this functional-coherence
criterion operates on the learnt function. It can be regarded
as a measure of coherence between the learnt function and it
projection onto a smaller-dimension space, which determines
if we keep the function or its projection as the final result.
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