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Machine Learning Methods: Outline

Outline:

Part 1: Introduction to Machine Learning
Part 2: (“Primal”) Machine Learning Algorithms
Part 3: Statistical Learning Theory and Support Vector Machines (this file)

Part 4: Multiclass and Regression
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Introductory example: detection/classification problem

A detection/classification problem can be written as:

wo:x=>b Hypothesis “only noise”
wi:x=b+s Hypothesis “signal and noise”

One needs to determine a detector/classifier (-), with the minimal probability error for
instance, namely

Pe(¥) = p(¥(z) # v),

where x is the observation and y the associated hypothesis.

The strategy to adopt to solve this problem depends on the nature of the information
and knowledge available on (z,y).
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Detection /classification problem

Modes of resolution

Free-structure detection/classification

By restricting ourselves to simple assumptions, the application of a decision rule such
as that of Bayes leads to

. L if p(x|wr)/p(e|wo) = Ao

P(x) = .
0 otherwise,

subject to knowing at least p(z|wo) and p(x|w1). The threshold Ag is the only parameter

that depends on the chosen rule.

Thus, the detector/classifier is not subject to any structural constraint, but results from
the choice of a criterion.

Detection/classification with imposed structure

Ignorance of the statistical properties of the sample requires the implementation of an
alternative strategy, which can be

Q define a class of detectors/classifiers H = {{(z,0) : 6 € O}

Q select the “best” element of H

Simple in appearance, this approach assumes that the following questions are satisfac-
torily answered:

Q How to choose the detector/classifier class H ?

Q What are the relevant risk functionals for the problem being addressed 7

Q Which optimization procedure to adopt ? 8
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Learning Problem

Problem of learning a decision rule

The knowledge of a probabilistic model is replaced by that of a set of data (i.e., training
dataset) Ap:

An = {(®1,91), (T2,52), - -, (Tn, yn) }-
We seek a decision rule that consists in finding a partition of the space of observations
X that is optimal in the sense of the chosen performance criterion.

There are two main approaches that can be distinguished:

Q Direct use of the learning dataset for decision making (e.g. k-nearest neighbors
rule)

Q Choice of the structure of the decision rule, then optimization of its characteristic
parameters according to the chosen criterion
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Learning Problem

k-nearest neighbors rule

The k-nearest neighbors rule
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Learning Problem

Learning a decision function

generator >

supervisor

learner

Q Generator: z € X C R%, as random vectors i.i.d.

Q Supervisor: y € Y C R, as random variables
O Learner: represented by ¢ (x;0) € H
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Learning Problem

Exemples of learners

— Polynomials of degree p

P(x;a) = g Qiy,..yig x[l}il v I[d}id
i1esig €N
i1+... 4+ <p

..., and other decompositions on a basis, such as Fourier series, Haar, ...

— Splines
Y(z;c) € L2(RY) such that ¥’ € L2(RY), ||v']]? < ¢

— Nadaraya-Watson
Yo i Ko (m, ;)

:L:l KJ(IE, mz)

blaso) =

- MLP, RBF, ...
P(x;a,0) = Zak gk (x; Or)

k
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Learning Problem

Risk minimization

Objective

To find in H = {¢(x,0) : 6 € O} a function realizing the best approximation of y in
the sense of a risk functional of the form

J(¥) =/Q(¢(z79)7y)p(z,y) dz dy,

where Q) represents a cost associated to each pair (z,y).

Example of cost function: probability error
When it comes to developing a minimum error probability decision structure, the risk is
expressed as

Pe(w):/]l(z,e)#yp(w,y) dzx dy,

where 1 denotes the indicator function.
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Problem of learning

Other examples of cost functions

— Quadratic cost

Q(z,y) = (y —P(x;0))> — *(x;0) =E(y|z)

— Absolute cost

Q(z,y) = |y — ¢(=;0)]

— Cross Entropy

Q(z,y) = —ylog(y(x;0)) — (1 —y)log(l —Y(z;0)) — ™ (x;0) =Py =1]|=)
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Learning Problem

Minimization of the empirical risk

It's about minimizing the risk functional

J(¥) =/Q(w(w;9)7y)p(w,y) Y dy,

the probability density p(x,y) being unknown.

Minimization of the empirical risk (MER)

The minimization of J(v) translates into that of the empirical risk

Jemp(W) = ZQ(zﬁmk, Yk)s

which can be evaluated using the training dataset A,,.

Empirical probability error
The empirical risk associated to the probability of error is the number of assignment
errors committed by i (x; 6) on Ay, namely

Pemp(4) = Z Ly (@y:0) 2y,

o
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Learning Problem

Example of implementation issue

Problem. Two Gaussian families wg and wj in R2, of distinct means and covariance
matrices, each made up by 10 samples.

Which frontier to choose ?

What happens if Pe(linear) = 5% while P.(quadratic) = 9% ?

16 /85
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Learning Problem

Approximation error and estimation error

Let ¢* = argmin J(¢) be the rule of minimal risk, and ¢/ = argminy ey Jemp ()
the one that minimizes the empirical risk on H using the training dataset A,,.

Definition (Estimation error)

It is the difference in performance between the best rule in 7 and the one obtained
from learning:

Jesim:Je :L_.fje
¢ (¥n) ot (¥)

> relevance of the empirical criterion and performance of the algorithm

Definition (Approximation error)

It is given by the difference in performance between the optimal rule )* and the best
one within #:

Japproxz = inf Je —Je *
pp 1,/111617{ () ()

> choice of the class H
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Learning Problem

Modeling error

Learning

The goal of learning is to minimize the modeling error, defined by:

Imod(¥) = Je(¥p) — Je(¥™).

There are two contributions of different natures in this error:

Tmoa(ty) = (Je(%) - wnelﬁd Je(d))) + (wnel% Je(¥) — Je(W)) :

Jesti'm Japp'l‘o:(:

The minimization of J,,,q is based on the search for a tradeoff between these two
antagonistic terms: the increase in the number of tests in H leads to an increase of
Jestim While Japprox decreases, and vice versa.
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Learning Problem

Approximation error, estimation error, and modeling error

solution
*

e

J7nod L d
obtained rule

Je(y)

Japproz
Jestim

infyey Je(?)
optimal rule of H

Questions:

1. Is the objective feasible ?
— Consistency of the decision rule
— Consistency of the induction principle

— Convergence rate
2.: If yes, how in practice ?
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Learning Problem

Consistency and convergence rate from Peynp to Pe

Precursor work by Vapnik and Chervonenkis (1971) provided quantitative instructions
on the convergence rate of Pepmyp to Pe.

Inequality of Vapnik-Chervonenkis:
P in(Zm) ng
- .

With a probability of at least 1 — ¢, we have: Pe(¢)) < Pemp(¥) +
Y

Pemp(¥) + ¥(n, h, ¢) ¥(n,h,¢e)

Pemp(¥)

ha h* hi VC-dim (complexity of H)
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Learning Problem

Principle of the structural risk minimization

The structural risk minimization principe advocated by Vapnik implies the construction,
within the class H, a sequence of nested subsets Hj

Hi1C...CHgC...CH.

With this structure established, the learning phase is conducted in two stages:

Q Search for the detector/classifier with minimum empirical error in each subset
Hy -
¥ . =arg min P, ).
ok = @18 min Py (1)

Q Select the detector/classifier with the best guaranteed error
Pemp(W7,,,) + W(n, by, )

vl = argin;?{Pemp(ll):’k) + ¥(n, hg,e)}.
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Statistical Machine Learning
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[ll-posed Problems and Regularization

lll-posed problems and regularization
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Ill-posed Problem

Introduction

Learning Problem:

We seek a function from a space H of candidate functions defined from X to ), such
that, for any «x, predicts the corresponding label y, namely

y=Y(x)

We have a training dataset A, = {(z1,¥1),---, (®n,yn)}

> Goal: empirical risk minimization AND generalization !
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Ill-posed Problem

Definition of ill-posedness

Definition (Well-posed problem / ill-posed problem (Hadamard))
A problem is said well-posed if

@ the solution exists

@ the solution is unique

@ the solution is a continuous function of the data (a small perturbation of the data
leads to a small perturbation of the solution)

A problem is said ill-posed if it is not well-posed
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Ill-posed Problem

Unique solution !
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Ill-posed Problem

Unique solution !
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Ill-posed Problem

Unique solution !
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Ill-posed Problem

Unique solution !
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Ill-posed Problem

Continuity of the solution !
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Ill-posed Problem

Continuity of the solution !
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Ill-posed Problem

Minimization of the empirical risk

The minimization of the empirical risk

n

Temp(®) = = > QU (wr), ub),

k=1

is an ill-posed problem.

Solution: Regularization

33/85



Regularization
rrrrrrrrrrrel

Ill-posed Problem

lvanov regularization

Régularisation d'lvanov

Determine the function v that minimizes

=3 Q). ).
n
k=1

subject to

[4]I” < A

34 /85
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Ill-posed Problem

Tikhonov regularization

Penalized empirical risk:

RisqEmp(v) + n Pen(v),

where 7 is a positive parameter that controls the tradeoff of the two terms.
> The penalty terme allows to incorporate a smoothing effect

Tikhonov regularization

Determine the function v of a space H of candidate functions, minimizing
1 n
2
= QU@n) vi) + vl
k=1

for a parameter > 0, and where ||1||% is a functional norm in the space 7.

This problem is well-posed.

o
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The Percetron Algorithm

The Perceptron algorithm aims to produce a minimum learning error solution by mini-
mizing the following empirical risk:

n
* * . : R .
(w*,b >farg(%2\yz d(wi; w,b)|.
=1

> Why would the obtained solution have the best performance?
> Is minimizing the empirical error a good idea?

> Is there an alternative ?
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Linear classifier

Definition

We consider a two-class classification problem of n samples in R?, given a training
dataset

An = {(@1,91), (T2,92), - -, (Tn, yn) }-
Let y; = (—1) if ; € wo, and y; = (+1) if &; € wy.

A linear classifier is defined by

d(z; w,b) = sign({(w, z) + b).
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Linear Separability

Definition

We consider a two-class classification problem of n samples in R?, given a training
dataset

An = {(z1,y1), (T2,92), ..., (Tn,yn)}-
Let y; = (—1) if ; € wo, and y; = (+1) if &; € wy.

A hyperplane is defined by the following equation, upto a multiplicative constant:

(w,z) +b=0 <<= (yw,z)+~vb=0, yeR"

The classes wp and w; are called linearly separable if there exist w and b, such that

(w,z;) +b>+1 Vx; € wi
(w,z;) +b< -1 Vx,; € wo

In the following, we summarize this criterion of separability as

40/85
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A new induction principle

Among the separators having a minimum empirical error, it is advisable to choose the
one of maximum margin (Vapnik 1965, 1992).

(w,x) +b>0

margin +

41 /85
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A new induction principle

Illustration

Small margin: expected low performance in generalization

Wide marge: probably good performance in generalization

This will be justified more rigorously now.
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A new induction principle

Margin calculus

(w, @) + b= (+1)

N + + o4+
NN + it
S + +
AN + oyt e
+ +
< AN 4 R ++
~. N s
~ S et
~ N +
- + +
~ @y N ¢ +++ o
~ @
AN S +
¢} [oN P ~
09 o> hES
w /0 5 00 O ¢ AN
N N
o 09860 o0,
%0 "% o0 N
O ~
o OOOOO o &o AN (w,z) +b=0
O "0 o 0 N
) ] AN
(w, @) +b=(-1)

We have (w,x2) +b = (+1) and (w,x1) + b = (—1). Therefore, we get

(Far= =)~
p={(—,ma—m ) = —
flwll (|l
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A new induction principle

Margin maximization

The maximization of the margin p, which is the fundamental principle of SVM, is
justified by the following result from the statistical theory of learning.

Theorem

Consider the hyperplanes of the form (w,x) = 0, where w is normalized in a way that
the hyperplanes take the canonical form with respect to Ay, namely

min |[(w,x)| = 1.
min |(w,)|

The set of decision functions v(x;w) = sgn(w, x), defined from A;, and satisfying
the constraint ||w|| < A, has an upper-bounded VC-dimension h with

h < R2AZ,

where R is the radius of the smallest sphere centered on the origin containing A, .

As a result, the more p = 2/||w|| is large, the more h is small.

448
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Support vector machines (hard margin)

Formulation of the optimization problem

Maximizing the margin, defined by p = ﬁ is equivalent to minimizing ||w]||?. The
MRS principle is implemented by solving the following optimization problem:
Minimize ||w||?

subject to y; ((w,x;) +b) > 1, 1<i<n.

Note: This formulation is valid only for linearly separable classes.
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Support vector machines (hard margin)

Reminders on Lagrange multipliers

The minimization of a convex function f(z), under constraints g;(x) < 0,i=1,...,n,
is equivalent to the search for the saddle point of the Lagrangian

L(wie) = (@) + Y _ i gi().
i=1

The minimum is taken with respect to . The maximum is relative to Lagrange's n
multiplicateurs «;, which must be positive or null.

The so-called Karush-Kuhn-Tucker conditions are satisfied at the optimum:

af gi(z*) =0, i=1,...,n.

46 /85
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Support vector machines (hard margin)
Resolution by the Lagrangian method

The above problem is solved using the Lagrangian method

1 n
Lw,ba) = 2 [wl* =) oifyi((w,@) +b) =1}, a; >0.

=1

The function L needs to be minimized with respect to the primal variables w and b,

and maximized with respect to the dual variables «;.

llllllllllllllllll"
l”/””’”l” I
I 1 ',l,',

7] s

NN
\\

i
1 1111711777
Wy
S L
SSsSENuunan “\\villl%,’,',',',,'l'li
s

19 Y
o0 NN\
N NN
S, LT
S S SO SSSUSSs
RS
S
===
SIS

e
e
i




Algorithms: SVM
rrrrrrrrrrrerrrrrrrret

Support vector machines (hard margin)

Dual problem formulation

The optimality conditions formulated by considering the Lagrangian,
1 n
Liw,ba) = 7 [lwl® = Y oifyi((w,2i) +b) — 1},
i=1

result in null derivatives with respect to the primal and dual variables:

aiwL(w,b; a)=0 %L(w,b; a) =0.

A quick calculation leads to the following relationships which, injected into the La-
grangian expression, provides the dual problem to be solved:

n n

* * *
E a;y; =0 w" = E a; Y; T
i=1 i=1

The dual optimization problem is finally expressed as:
Maximize W (a) = ?:1 a; — % ZZ]’:I o Y yj (i, @)

subject to Z?:l a;y; =0, a; >0, Vi=1,...,n.
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Support vector machines (hard margin)

Formulation of the solution and support vectors

The normal vector to the optimum separator plane is expressed as:

n
w* = Z af yi
i=1
From the Karush-Kuhn-Tucker conditions, we have at the optimum:
ai{yi((w*, i) +b%) — 1} = 0.

Case 1: y;((w*,x;) +b*) > 1
we have o = 0, which means that x; is not present in the expression of w*.
Case 2: y;((w*,x;) +b*) =1
We have o # 0 and x; is on the margin. We deduce b* from such samples.

The vector w* is defined only from the x; located on the margin, the so-called
Support Vectors. J
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Support vector machines (hard margin)

Support vectors

The support vectors are indicated below by the arrows.
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Generalization performance of SVM

The fact that the optimum hyperplane is expressed only in terms of the support vectors
is remarkable because, in general, their number is small.

The number ng, of support vectors allows to estimate the generalization performance
of the classifier:
E{nsv}
n

E{Pe} <
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Support vector machines (soft margin)

Penalty

When the competing classes are not linearly separable, the formulation of the problem
needs to be modified in order to penalize misclassified data.

+
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Support vector machines (soft margin)

Penalization functions

The most common mode of penalization is related to the distance of the misclassified
sample to the margin. Its square value is sometimes considered.

b
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Support vector machines (soft margin)

Formulation of the optimization problem

The previous diagram motivates to reformulate the problem of optimization as follows.

Minimize %||w||2 + CZ?:l &, C2>0

subject to y;((w,x;) +b) >1-§&, & >0, 1<i<n.

The term CZ:;l &; has the effect of penalizing badly classified samples. Other pe-
nalization functions exist as well.
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Support vector machines (soft margin)

Resolution with the Lagrangian method
The above problem is solved using the Lagrangian method
1 n n n
Liw,b&a.f) = S w|? +CY & =Y afui(w.a) +b) —1+&} = > A,
i=1 i=1 i=1
where the a; and 3; are the Lagrange multipliers, positive or nul.

The function L has to be minimized with respect to the primal variables w and b, and
maximized with respect to the dual variables o; and 3;.
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Support vector machines (soft margin)

Formulation of the dual problem

The optimality conditions, defined by the Lagrangian formulation
1 n n n
Liw,b o, f) = S |w|? +CY & =Y afui(wa) +b) —1+&} = > A,
i=1 i=1 i=1

can be interpreted by nullifying the derivatives with respect to the primal and dual
variables:

n
1o}
i=1

Db & =0 = 3 alu=0
i=1

%L(mb,ﬁ;a,ﬂ) =0 = pBr=C-of

Injected in the Lagrangian expression, these relations provide the dual problem to be
solved.
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Support vector machines (soft margin)

Formulation of the dual problem and solution

The dual optimization problem is finally expressed as follows:

Minimize W (a) = E:;l o — % ZZJ':1 o o Y; Y (i, )

subject to Zleaiyizo, 0<a; <C, Vi=1,...,n.

The solution of the problem is finally written as

Y(xz; a”,b*) = sign Za;‘ yi (@, ;) + b*

sv

To determine b*, we use the Karush-Kuhn-Tucker conditions:
o {yi((w*, @) +0%) —1+£7}=0,  Bi¢gr=0.

For any support vector ; such as a; < C, we have & = 0 and b* = y; — (w*, z;).

o
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Support vector machines (soft margin)

Choice of the parameter C'

Minimize %||w||2 + CZ?:l &, C2>0

subject to y;({w, z;) +b) > 1-¢&;, & >0, 1<i<n.

The parameter C' makes a tradeoff between the width of the margin, which has a
regularizing role, and the number of misclassified samples.

Big C: small margin, less errors in classification

Small C: large margin, more errors in classification

The value of the parameter C can be determined by cross-validation.

o
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Examples of implementation

Examples of implemen

Bayes classifier Regression 0/1
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amples of implementation

Examples of implementation

Support vector machines

SVM with C = 10%

T
96

Learning error: 0.27
Test error: 0.29
Bayes: 0.21

Learning error: (1-26
Test error: 0.30
Bayes: 0.21
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Nonlinear Support Vector Machines

From linear to nonlinear

Linear classifiers have limited classification capabilities. To remedy this, we can imple-
ment them after a nonlinear transformation of the data.

z — ¢(x) = [¢1(x), p2(2), .. ]*

where the ¢;(x) are the nonlinear functions that are chosen beforehand.

A classifier that is linear in ¢(x) are nonlinear with respect to x J

63 /85
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Nonlinear Support Vector Machines

Example: polynomial classifier

Let z = [z(1) =(2) =(3)]¢. Consider the following transformation:
¢1(x) =x(1)  da(z) =2(1)* ¢r(x) = 2(1)z(2)
p2(xz) =2(2) é5(x) =2(2)% ¢s(z) = x(1) 2(3)
¢3(x) =z(3) do(x) =x(3)>  ¢o(x) = z(2)z(3)
A classifier, linear in the transformed space {¢(x)},cRs, namely
Y(w; w, b) = sign({w, ¢(z)) +b),
is a polynomial classifier of degree 2 with respect to .

z=x(1)2 + 2(2)2

(2 » z
z(1) z(1)

The polynomial transformation makes the data linearly separable.
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Nonlinear Support Vector Machines

Optimization in a transformed space

The dual optimization problem is thus expressed as:

Minimize W () = E:;l oy —

3D o @i 05 i Yy (D), ()
subject to Y " a;yi =0, 0<a; <C, Vi=1,...,n.

The solution can be written as

wlasat,b*) =sign | Y af yi (@), plxi) +b*

We can see that
@ we never need to explicitly compute ¢(x);

¢ if x has a big dimension, the dimension of ¢(x) is even bigger, sometimes infinite
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Nonlinear Support Vector Machines
The kernel trick

If you can define a kernel k(x;,z;) = (¢p(x;), ¢(x;)) such that:

@ the associated decision rule is efficient

Y(x; ™, b") = sign Za:yin(a}i,w]‘)—i—b* ,

sv

@ it is easy to compute x(x;, ), even for large-dimension data,

then that's it !
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Nonlinear Support Vector Machines

Polynomial kernels

In the case of a 2-degree polynomial transformation, it is easy to show that:

(@), p(z") = (1 + (2,2'))* £ w(x,2")

> The inner product can be computed in IR? !

More generally, one is interested in x(x, ') = (1 + (¢(x), p(x')))?, with & € R

q

K@) = (1+ @a)? = (

Jj=0

q ng
j)(m,m)].

Each component (x,z') = [z(1) /(1) + ...+ z(d) =’ (d)]? of this expression can be
expanded into a weighted sum of monomials of degree j of the form

[2(1) " (D) [2(2) 2’ ()2 ... [2(d) &' (d)]7

with Z?zl ji = j. This directly leads to the expression of ¢(x)...
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The kernel trick

Mercer theorem

We are interested in the functions x(x,’) that can act as an inner product in a space
H. We call kernel a symmetric function k from X x X dans R.

Theorem (Mercer)

If k is a continuous kernel of a positive definite integral operator, which means that

// ) k(z, ') p*(z') de dz’ >0

for all ¢ € L2(X), it can be decomposed into the forme

k(z, ') Z)\ vi(x) pi(z'),

where 1); and \; are the eigenfunctions (orthogonal) and eigenvalues (positive) of the
kernel r, respectively, such that

/n(z, x') i (x) de = \; pi(x').
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The kernel trick

Mercer theorem

It is easy to see that a kernel k satisfying Mercer’'s theorem can act as a inner product
in a transformed space H. Just write:

VA1 ()
d(x) = | VA2 ¢2(z)

In these conditions, we check that we have: (¢(x), ¢(z’)) = w(z, z’).

We define the space H as being generated by the eigenfunctions 1; of the kernel &,
that is to say

H={f() | f@@) =) i ti(@), @i € R},

=1
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The kernel trick

Examples de Mercer kernels

We can show that the following kernels satisfy the Mercer condition, and therefore
correspond to an inner product in a space H

Projective kernels
monomial of degree ¢ <IE x’)?
polynomial of degree ¢ 1+ (z,z'))?
sigmoidal tanh(50< ') — ao)
Radial kernels
Gaussian eXP(—ﬁ”$ —2'||?)
exponential exp(—— lz —2'll)
uniforme no chz: =/ ||<Bo
Epanechnikov % B3 - llz—2']?) Vjz—ar|<po
1 T
Cauchy no THlz—a[2/53

and more k1 (z, ') + ko (z, '), ki(z,2') - K2 (z,2')

~
=]
@
o
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Nonlinear Support Vector Machines

Example of implementation

Polynomial kernel of degree 4 Gaussian kernel

Learning: 0.180
Test: 0.245
Bayes: 0.210

Learning: 0.160
Test: 0.218 B
P Bayes: 0.210 RS
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@ Python implementation
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Python implementation




Python
e

ation of Maximum Margin Separating Hyperplane in SVM

Plot separating hyperplane

import numpy as np

import matplotlib.pyplot as plt

from sklearn import svm

from sklearn.datasets import make_blobs

“reate separable p

X, y = make_blobs(n_samples=40, centers=2, random_state=6)

# fit the model, don’t regularize fo llustrat purpose
clf = svm.SVC(kernel=’linear’, C=1000)
clf . fit (X, y) i

plt.scatter(X[:, 0], X[:, 1], c=y, s=30, cmap=plt.cm.Paired)

# plot the dec >
ax = plt.gca() -8
xlim = ax.get_xlim()
ylim = ax.get_ylim()

IS o evaluate model

xx = np.linspace(x1im[0], xlim[1], 30)

yy = np.linspace(ylim[0], ylim[1], 30)

YY, XX = np.meshgrid(yy, xx)

xy = np.vstack([XX.ravel(), YY.ravel()]).T

Z = clf.decision_function(xy).reshape(XX.shape)

# plot decision boundary and ma

ax.contour (XX, YY, Z, colors=’k’, levels=[-1, 0, 1], alpha=0.5,
linestyles=[’'--’, ’-’, ’--1)

# plot support vector

ax.scatter (c1f.support_vectors_[:, 0], clf.support_vectors_[:, 1], s=100,
linewidth=1, facecolors=’none’, edgecolors='k’)

plt.show ()



https://scikit-learn.org/stable/auto_examples/svm/plot_separating_hyperplane.html
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Margins for different C' values

Plot SVM margin

e irce ¢ 3 1au plt.scatter (clf.support_vectors_[:, 0], clf.support_vectors

# Modified f imentation ! 5=80, facecolors . zorder=10, edgecolors

# Licen ) 1u plt.scatter (X[:, 01, X[:, 11, . zorder=10,
cmap=plt.cm.Paired, edgecolors=’k’)

import numpy as np

import matplotlib.pyplot as plt plt.axis( )
from sklearn import svm x_min
x_max =

e creat eparable point yomin
np . random . seed (0) y_max
X = np.r_[np.random.randn (20, 2)

- [2, 2], np.random.randn (20, 2) + [2, 2]] XX, YY = np.mgrid(x_min:x_max:200j, y_min:y_max:200j]

¥ = [0] * 20 + [1) * 20 Z = clf .predict (np.c_[XX.ravel (), YY.ravel(])

! I
fignum = 1 z =

ut th 11t into a x
Z.reshape (XX.shape)

plt.figure (fignum, figsize=(4, 3))
¥ fit th plt.pcolormesh (XX, YY, Z, cmap=plt.cm.Paired)
for name, penalty in (( , 1), Creg’, 0.08)):

plt.xlim(x_min, x_max)
clf = svm.SVC(kernel=’linear’, C=penalty) plt.ylin(y_min, y_max)
clf . fit(X, V)

plt.xticks ()

# get ti parating hyperplar plt.yticks ()
clf.coef_[0] fignum = fignum + 1
-wlo) / wl1]
np.linspace (-5, 5) plt.show )
a ® xx - (clf.intercept_ [01) / wl1]

re n 2-d
margin = 1 / np.sqrt(np.sum(clf.coef_ #* 2))
yy_down = yy - mp.sqrt(l + a %+ 2) * margin
yy_up = yy + mp.sqrt(l + a ** 2) * margin

plot the line, point nd neare
plt.figure (fignun, figsize=(4, 3))
plt.clf O

plt.plot (xx, yy, ’'k-’)

plt.plot (xx, yy_down,
plt.plot (xx, yy_up, ’

~
G
@
o
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Nonlinear SVM

Plot SVM kernels

Python
et

import numpy as np
taport matploilid pyplot as plt
from sklearn import

clr.fit(x, v

plt.figure (fignum, figsize
plt.clfO)

plt.scatter (X[

pie scatter (clf oupport_vectors_ [+, 01, cLf support_vectors. [
X, 1 ap

XK, YY = np.mgrid(x_min:x_max
Z © clf.decision_function (np.c_

Z = z.reshape (XX.shape)
ple. figure (fignun, figsize

plt.peolormesh (XX, YY, Z > 0,
plt.contour (XX, YV, Z, colors
plt.xlin(x_min, x_max)
plt.ylin(y_nin, y_max)

plt.xticks ()

pLt . shou ()

0. facecolors ='none
gecolors =k

zorder=10

2003 n:y_max :200§)
Xk | rare1 O 2 1. ravel OD)

cmap=plt.cn.Paired)
1. linestyle

edgecolors =



https://scikit-learn.org/stable/auto_examples/svm/plot_svm_kernels.html

Python
rrrrn

Nonlinear SVM on IRIS Dataset

Plot IRIS exercice

inear
smport numpy as ap
import matplotlib - pyplot as plt 3350
from sklearn import datasets. ave
azs
iris = datasets.load iris O
X = iris.data
200
¥ = iris.target
X Xly 0, :2] e
v = yly t= o
250
n_sample = len(X)
22
5p. randon . seed (0)
or 7. randon . permutation (n_sasple) 200
X = X[order]
¥ = ylorder] . astype (np. float)
X[:int (.9 + n_sample)]
§Lnt (9 « n sample)]
X[int (.9 + n_sample):] >
ylne (9 + n sample) ]
for fig_num, kernel in enumerate ((’linear’, 'r poly’)) 325
€1f = aun.SVC(kernel=kernel ; gamna=10)
Q1. £t (x rain, § train) 200
plt. figure (£ig nun) -
Plt.clf O
PIt.scatter (X[:, 01, Xl:, 11, coy, . 250
caapeplt e Paired | sdgecolor='x’,
228
pIt.scatter (X_test[:, 0], X test[:, 1], s=60,
acecolors ='no; . zorde: , edgecolor="k’) s
x
X[
Xl:, 375
X0 1 lmax0
250
XX, Y = np.mgridlx min:x max:200j, y min:y max:200j]
71 clfdecision. function (np-c. CXE.ravel O, Y¥.ravel 0) az
200
Z = Z.reshape (xX. shape)
Pt peolornesh (XX, 1Y,
plt.contour (XX, YY, Z, 275
linestyles 2 0, .8))
250
plt. title (kernel)
pLt. Show O
200
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Parameters of RBF SVM

Python
rrreen

Plot RBF parameters

import numpy as
import matpiotlic pyplot as plt
from matplotlib.colors import Normalize

from sklearn.sva import SUC
from sklearn . preprocessing import StandardScaler
from sklearn.datasets import load iris
from sklearn . model selection import StratifiedShuffleSplit
from sklearn . model selection import GridSearchCv

class Midpointlormalize (Normalize)

re(figaize=(8, 6))

5.y - pe-neshgria (p dinapace (3, 3, 200), np dinspace (-3, 3, 200)
|

or 1T et R i numerato (t1aseitiots

¢t decision_function (np.c_[xx.ravel O, yy.ravel O1)
rechape (x1. shape

pLt.subplot (len(C_2d_range ), len(gamna_2d_range )
5 Te ("ga i (n

def __init__ (self, =lione, vmax=lone, midpoint=None, clip=False)
s81f . midpoint rr\dpuml
Normalize .__init__ (self, vmin, vmax, clip)

def __call_ (selt, value,

clip=one)
%y = Tealf.min, self.midpoint, self.vmax], [0, 0.5
return np.ma.masked_array (np.interp (value, x, y))

load_iris ()
ric.daia
iris.target

scaler = sta
scaler. fit_transforn (X)
2 Tit_transform (X_2d)

c_range - np. logspace (-

spa
paran_grid dlcc(garr'm garr'n‘a ra—‘gc

S aTen.grid parangrid, oveev

print ("The be raneter [

% (grid-bebr parans. . Erid.best.scors. >

cmdnm =
C_2d_range
or gaina in ganma_2d_range
1 G (G=C,” gamma-ganna)
)

elf . fie (X 2
Classifiere .appand ((C, gamma, c11))

Size=0.2, random_state =42)
i)

plt.pcolormesh Gux, yy, -Z, cmap=plt.cm.RdBu)

plt scatter (X 2d[!, 0], X'2al:, 1], 2d
edgecolors < k7)

pLt.xticks (())

plt.yticks ()

pLt axis ('tigh

scores = grid.cv_results. ['mean t core '] . reshape (len(C_range) ,
plt-figure (figsize=(s, 6))
P1t subplo

Lk D
1010 (ganma) , np-10g10(C

Plt . shou(

PAPPE PSS

The best parameters are ’C’: 1.0, ’gamma’: 0.1 with a score of 0.97

Len(ganna_range )
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Assessment on the SVM

Compared to competing techniques such as neural networks, SVMs have great qualities:

Q@ Unique solution
— Quadratic problem

Q Integrated regularization process, sparse solution
— Cost function and resulting inequality constraints

Q Easy extension to the non-linear case, non black-box solution
— Kernel trick

@
@
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Concluding remarks
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