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Machine Learning Methods: Outline

Outline:

Part 1: Introduction to Machine Learning

Part 2: (“Primal”) Machine Learning Algorithms

Part 3: Statistical Learning Theory and Support Vector Machines (this file)

Part 4: Multiclass and Regression
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Introductory example: detection/classification problem

A detection/classification problem can be written as:

{
ω0 : x = b Hypothesis “only noise”
ω1 : x = b + s Hypothesis “signal and noise”

One needs to determine a detector/classifier ψ(·), with the minimal probability error for
instance, namely

Pe(ψ) = p(ψ(x) 6= y),

where x is the observation and y the associated hypothesis.

The strategy to adopt to solve this problem depends on the nature of the information
and knowledge available on (x, y).
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Detection/classification problem
Modes of resolution

Free-structure detection/classification

By restricting ourselves to simple assumptions, the application of a decision rule such
as that of Bayes leads to

ψ∗(x) =

{
1 if p(x|ω1)/p(x|ω0) ≥ λ0

0 otherwise,

subject to knowing at least p(x|ω0) and p(x|ω1). The threshold λ0 is the only parameter
that depends on the chosen rule.
Thus, the detector/classifier is not subject to any structural constraint, but results from
the choice of a criterion.

Detection/classification with imposed structure

Ignorance of the statistical properties of the sample requires the implementation of an
alternative strategy, which can be

1 define a class of detectors/classifiers H = {ψ(x, θ) : θ ∈ Θ}
2 select the “best” element of H

Simple in appearance, this approach assumes that the following questions are satisfac-
torily answered:

1 How to choose the detector/classifier class H ?
2 What are the relevant risk functionals for the problem being addressed ?
3 Which optimization procedure to adopt ? 8 / 85
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Learning Problem
Problem of learning a decision rule

The knowledge of a probabilistic model is replaced by that of a set of data (i.e., training
dataset) An:

An = {(x1, y1), (x2, y2), . . . , (xn, yn)}.
We seek a decision rule that consists in finding a partition of the space of observations
X that is optimal in the sense of the chosen performance criterion.

There are two main approaches that can be distinguished:

1 Direct use of the learning dataset for decision making (e.g. k-nearest neighbors
rule)

2 Choice of the structure of the decision rule, then optimization of its characteristic
parameters according to the chosen criterion
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Learning Problem
k-nearest neighbors rule

The k-nearest neighbors rule

...

...

...
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Learning Problem
Learning a decision function

1 Generator: x ∈ X ⊂ IRd, as random vectors i.i.d.

2 Supervisor: y ∈ Y ⊂ IR, as random variables

3 Learner: represented by ψ(x; θ) ∈ H
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Learning Problem
Exemples of learners

– Polynomials of degree p

ψ(x; a) =
∑

i1,...,id∈IN

i1+...+il≤p

ai1,...,id x[1]i1 . . . x[d]id

..., and other decompositions on a basis, such as Fourier series, Haar, ...

– Splines
ψ(x; c) ∈ L2(IRd) such that ψ′ ∈ L2(IRd), ‖ψ′‖2 ≤ c

– Nadaraya-Watson

ψ(x; σ) =

∑n

i=1
yiKσ(x,xi)

∑n

i=1
Kσ(x,xi)

– MLP, RBF, ...

ψ(x; a, θ) =
∑

k

ak gk(x; θk)
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Learning Problem
Risk minimization

Objective

To find in H = {ψ(x, θ) : θ ∈ Θ} a function realizing the best approximation of y in
the sense of a risk functional of the form

J(ψ) =

∫

Q(ψ(x, θ), y) p(x, y) dx dy,

where Q represents a cost associated to each pair (x, y).

Example of cost function: probability error
When it comes to developing a minimum error probability decision structure, the risk is
expressed as

Pe(ψ) =

∫

1l(x,θ) 6=y p(x, y) dx dy,

where 1l denotes the indicator function.
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Problem of learning
Other examples of cost functions

– Quadratic cost

Q(x, y) = (y − ψ(x; θ))2 → ψ∗(x; θ) = E(y | x)

– Absolute cost
Q(x, y) = |y − ψ(x; θ)|

– Cross Entropy

Q(x, y) = −y log(ψ(x; θ)) − (1 − y) log(1 − ψ(x; θ)) → ψ∗(x; θ) = P(y = 1 | x)
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Learning Problem
Minimization of the empirical risk

It’s about minimizing the risk functional

J(ψ) =

∫

Q(ψ(x; θ), y) p(x, y)ψx dy,

the probability density p(x, y) being unknown.

Minimization of the empirical risk (MER)

The minimization of J(ψ) translates into that of the empirical risk

Jemp(ψ) =
1

n

n∑

k=1

Q(ψ(xk; θ), yk),

which can be evaluated using the training dataset An.

Empirical probability error
The empirical risk associated to the probability of error is the number of assignment
errors committed by ψ(x; θ) on An, namely

Pemp(ψ) =
1

n

n∑

k=1

1lψ(xk;θ) 6=yk
.
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Learning Problem
Example of implementation issue

Problem. Two Gaussian families ω0 and ω1 in IR2, of distinct means and covariance
matrices, each made up by 10 samples.

Which frontier to choose ?

What happens if P̂e(linear) = 5% while P̂e(quadratic) = 9% ?
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Learning Problem
Approximation error and estimation error

Let ψ∗ = arg minJ(ψ) be the rule of minimal risk, and ψ∗
n = arg minψ∈H Jemp(ψ)

the one that minimizes the empirical risk on H using the training dataset An.

Definition (Estimation error)

It is the difference in performance between the best rule in H and the one obtained
from learning:

Jestim = Je(ψ
∗
n) − inf

ψ∈H
Je(ψ)

⊲ relevance of the empirical criterion and performance of the algorithm

Definition (Approximation error)

It is given by the difference in performance between the optimal rule ψ∗ and the best
one within H:

Japprox = inf
ψ∈H

Je(ψ) − Je(ψ
∗)

⊲ choice of the class H

17 / 85
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Learning Problem
Modeling error

Learning

The goal of learning is to minimize the modeling error, defined by:

Jmod(ψ∗
n) = Je(ψ

∗
n) − Je(ψ

∗).

There are two contributions of different natures in this error:

Jmod(ψ∗
n) =

(

Je(ψ
∗
n) − inf

ψ∈H
Je(ψ)

)

︸ ︷︷ ︸

Jestim

+

(

inf
ψ∈H

Je(ψ) − Je(ψ∗)

)

︸ ︷︷ ︸

Japprox

.

The minimization of Jmod is based on the search for a tradeoff between these two
antagonistic terms: the increase in the number of tests in H leads to an increase of
Jestim while Japprox decreases, and vice versa.
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Learning Problem
Approximation error, estimation error, and modeling error

H
obtained rule

optimal rule of H

solution

Je(ψ∗
n)

infψ∈H Je(ψ)

J∗
e

Jmod

Jestim

Japprox

Questions:

1. Is the objective feasible ?

→ Consistency of the decision rule

→ Consistency of the induction principle

→ Convergence rate
2.: If yes, how in practice ?
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Learning Problem
Consistency and convergence rate from Pemp to Pe

Precursor work by Vapnik and Chervonenkis (1971) provided quantitative instructions
on the convergence rate of Pemp to Pe.

Inequality of Vapnik-Chervonenkis:

With a probability of at least 1 − ε, we have: Pe(ψ) ≤ Pemp(ψ) +

√
h ln( 2en

h )−ln ε
4

n
.

H1 H∗ Hk

h1 h∗
hk

Pemp(ψ) + Ψ(n, h, ε)

Pemp(ψ)

Ψ(n, h, ε)

VC-dim (complexity of H)
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Learning Problem
Principle of the structural risk minimization

The structural risk minimization principe advocated by Vapnik implies the construction,
within the class H, a sequence of nested subsets Hk

H1 ⊂ . . . ⊂ Hk ⊂ . . . ⊂ H.

With this structure established, the learning phase is conducted in two stages:

1 Search for the detector/classifier with minimum empirical error in each subset
Hk :

ψ∗
n,k = arg min

ψ∈Hk

Pemp(ψ).

2 Select the detector/classifier with the best guaranteed error
Pemp(ψ∗

n,k
) + Ψ(n, hk, ε):

ψ∗
n = arg min

k≥1
{Pemp(ψ∗

n,k) + Ψ(n, hk, ε)}.
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Statistical Machine Learning
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Ill-posed Problems and Regularization

Ill-posed problems and regularization
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Ill-posed Problem
Introduction

Learning Problem:

We seek a function from a space H of candidate functions defined from X to Y , such
that, for any x, predicts the corresponding label y, namely

y = ψ(x)

We have a training dataset An = {(x1, y1), . . . , (xn, yn)}

⊲ Goal: empirical risk minimization AND generalization !
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Ill-posed Problem
Definition of ill-posedness

Definition (Well-posed problem / ill-posed problem (Hadamard))

A problem is said well-posed if

the solution exists

the solution is unique

the solution is a continuous function of the data (a small perturbation of the data
leads to a small perturbation of the solution)

A problem is said ill-posed if it is not well-posed
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Ill-posed Problem
Unique solution !
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Ill-posed Problem
Continuity of the solution !

31 / 85



! Theory Regularization Algorithms: SVM Nonlinear SVM Python Epilogue !!

Ill-posed Problem
Continuity of the solution !

32 / 85



! Theory Regularization Algorithms: SVM Nonlinear SVM Python Epilogue !!

Ill-posed Problem
Minimization of the empirical risk

The minimization of the empirical risk

Jemp(ψ) =
1

n

n∑

k=1

Q(ψ(xk), yk),

is an ill-posed problem.

Solution: Regularization
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Ill-posed Problem
Ivanov regularization

Régularisation d’Ivanov

Determine the function ψ that minimizes

1

n

n∑

k=1

Q(ψ(xk), yk),

subject to
‖ψ‖2 ≤ A
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Ill-posed Problem
Tikhonov regularization

Penalized empirical risk:

RisqEmp(ψ) + η Pen(ψ),

where η is a positive parameter that controls the tradeoff of the two terms.
⊲ The penalty terme allows to incorporate a smoothing effect

Tikhonov regularization

Determine the function ψ of a space H of candidate functions, minimizing

1

n

n∑

k=1

Q(ψ(xk), yk) + η‖ψ‖2
H ,

for a parameter η > 0, and where ‖ψ‖H is a functional norm in the space H.

This problem is well-posed.
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Algorithms: Support Vector Machines
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The Percetron Algorithm

The Perceptron algorithm aims to produce a minimum learning error solution by mini-
mizing the following empirical risk:

(w∗, b∗) = arg min
(w,b)

n∑

i=1

|yi − d(xi; w, b)|.

⊲ Why would the obtained solution have the best performance?

⊲ Is minimizing the empirical error a good idea?

⊲ Is there an alternative ?

〈w,x〉 + b = 0

ω0
ω1

〈w,x〉 + b > 0

〈w,x〉 + b < 0

38 / 85



! Theory Regularization Algorithms: SVM Nonlinear SVM Python Epilogue !!

Linear classifier
Definition

We consider a two-class classification problem of n samples in IRd, given a training
dataset

An = {(x1, y1), (x2, y2), . . . , (xn, yn)}.
Let yi = (−1) if xi ∈ ω0, and yi = (+1) if xi ∈ ω1.

A linear classifier is defined by

d(x; w, b) = sign(〈w,x〉 + b).
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Linear Separability
Definition

We consider a two-class classification problem of n samples in IRd, given a training
dataset

An = {(x1, y1), (x2, y2), . . . , (xn, yn)}.
Let yi = (−1) if xi ∈ ω0, and yi = (+1) if xi ∈ ω1.

A hyperplane is defined by the following equation, upto a multiplicative constant:

〈w,x〉 + b = 0 ⇐⇒ 〈γw,x〉 + γ b = 0, γ ∈ IR∗

The classes ω0 and ω1 are called linearly separable if there exist w and b, such that

〈w,xi〉 + b ≥ +1 ∀xi ∈ ω1

〈w,xi〉 + b ≤ −1 ∀xi ∈ ω0

In the following, we summarize this criterion of separability as

yi (〈w,xi〉 + b) − 1 ≥ 0 ∀(xi, yi) ∈ An
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A new induction principle

Among the separators having a minimum empirical error, it is advisable to choose the
one of maximum margin (Vapnik 1965, 1992).

〈w,x〉 + b = 0

〈w,x〉 + b > 0

〈w,x〉 + b < 0

margin
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A new induction principle
Illustration

margin

margin

Small margin: expected low performance in generalization

Wide marge: probably good performance in generalization

This will be justified more rigorously now.
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A new induction principle
Margin calculus

w

ρ
x1

x2

〈w,x〉 + b = 0

〈w,x〉 + b = (+1)

〈w,x〉 + b = (−1)

We have 〈w,x2〉 + b = (+1) and 〈w,x1〉 + b = (−1). Therefore, we get

ρ =

〈
w

‖w‖
,x2 − x1

〉

=
2

‖w‖
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A new induction principle
Margin maximization

The maximization of the margin ρ, which is the fundamental principle of SVM, is
justified by the following result from the statistical theory of learning.

Theorem

Consider the hyperplanes of the form 〈w,x〉 = 0, where w is normalized in a way that
the hyperplanes take the canonical form with respect to An, namely

min
x∈An

|〈w,x〉| = 1.

The set of decision functions ψ(x; w) = sgn〈w,x〉, defined from An and satisfying
the constraint ‖w‖ ≤ Λ, has an upper-bounded VC-dimension h with

h ≤ R2Λ2,

where R is the radius of the smallest sphere centered on the origin containing An.

As a result, the more ρ = 2/‖w‖ is large, the more h is small.
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Support vector machines (hard margin)
Formulation of the optimization problem

Maximizing the margin, defined by ρ = 2
‖w‖

, is equivalent to minimizing ‖w‖2. The

MRS principle is implemented by solving the following optimization problem:

Minimize 1
2

‖w‖2

subject to yi (〈w,xi〉 + b) ≥ 1, 1 ≤ i ≤ n.

Note: This formulation is valid only for linearly separable classes.
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Support vector machines (hard margin)
Reminders on Lagrange multipliers

The minimization of a convex function f(x), under constraints gi(x) ≤ 0, i = 1, . . . , n,
is equivalent to the search for the saddle point of the Lagrangian

L(x; α) = f(x) +

n∑

i=1

αi gi(x).

The minimum is taken with respect to x. The maximum is relative to Lagrange’s n
multiplicateurs αi, which must be positive or null.

The so-called Karush-Kuhn-Tucker conditions are satisfied at the optimum:

α∗
i gi(x

∗) = 0, i = 1, . . . , n.
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Support vector machines (hard margin)
Resolution by the Lagrangian method

The above problem is solved using the Lagrangian method

L(w, b; α) =
1

2
‖w‖2 −

n∑

i=1

αi{yi(〈w,xi〉 + b) − 1}, αi ≥ 0.

The function L needs to be minimized with respect to the primal variables w and b,
and maximized with respect to the dual variables αi.

−2

0

2

0

1

2
−4

0

4

w
α

L
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Support vector machines (hard margin)
Dual problem formulation

The optimality conditions formulated by considering the Lagrangian,

L(w, b; α) =
1

2
‖w‖2 −

n∑

i=1

αi{yi(〈w,xi〉 + b) − 1},

result in null derivatives with respect to the primal and dual variables:

∂

∂w
L(w, b; α) = 0

∂

∂b
L(w, b; α) = 0.

A quick calculation leads to the following relationships which, injected into the La-
grangian expression, provides the dual problem to be solved:

n∑

i=1

α∗
i yi = 0 w∗ =

n∑

i=1

α∗
i yi xi.

The dual optimization problem is finally expressed as:

Maximize W (α) =
∑n

i=1
αi − 1

2

∑n

i,j=1
αi αj yi yj 〈xi,xj〉

subject to
∑n

i=1
αi yi = 0, αi ≥ 0, ∀i = 1, . . . , n.
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Support vector machines (hard margin)
Formulation of the solution and support vectors

The normal vector to the optimum separator plane is expressed as:

w∗ =

n∑

i=1

α∗
i yi xi

From the Karush-Kuhn-Tucker conditions, we have at the optimum:

α∗
i {yi(〈w∗,xi〉 + b∗) − 1} = 0.

Case 1: yi(〈w∗,xi〉 + b∗) > 1
we have α∗

i = 0, which means that xi is not present in the expression of w∗.

Case 2: yi(〈w∗,xi〉 + b∗) = 1
We have α∗

i 6= 0 and xi is on the margin. We deduce b∗ from such samples.

The vector w∗ is defined only from the xi located on the margin, the so-called
Support Vectors.
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Support vector machines (hard margin)
Support vectors

The support vectors are indicated below by the arrows.

ρ

ω1

ω0

x
∗
0+

x
∗
1+

x
∗
2+

x
∗
0−

x
∗
1−
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Generalization performance of SVM

The fact that the optimum hyperplane is expressed only in terms of the support vectors
is remarkable because, in general, their number is small.

The number nsv of support vectors allows to estimate the generalization performance
of the classifier:

E{Pe} ≤ E{nsv}
n
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Support vector machines (soft margin)
Penalty

When the competing classes are not linearly separable, the formulation of the problem
needs to be modified in order to penalize misclassified data.

ρ

w

〈w,x〉 + b = 0
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Support vector machines (soft margin)
Penalization functions

The most common mode of penalization is related to the distance of the misclassified
sample to the margin. Its square value is sometimes considered.

ρ

ξ
‖w‖
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Support vector machines (soft margin)
Formulation of the optimization problem

The previous diagram motivates to reformulate the problem of optimization as follows.

Minimize 1
2

‖w‖2 + C
∑n

i=1
ξi, C ≥ 0

subject to yi(〈w,xi〉 + b) ≥ 1 − ξi, ξi ≥ 0, 1 ≤ i ≤ n.

The term C
∑n

i=1
ξi has the effect of penalizing badly classified samples. Other pe-

nalization functions exist as well.
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Support vector machines (soft margin)
Resolution with the Lagrangian method

The above problem is solved using the Lagrangian method

L(w, b, ξ; α,β) =
1

2
‖w‖2 + C

n∑

i=1

ξi −
n∑

i=1

αi{yi(〈w,xi〉 + b) − 1 + ξi} −
n∑

i=1

βiξi,

where the αi and βi are the Lagrange multipliers, positive or nul.

The function L has to be minimized with respect to the primal variables w and b, and
maximized with respect to the dual variables αi and βi.

−2

0

2

0

1

2
−4

0

4

w
α,β

L
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Support vector machines (soft margin)
Formulation of the dual problem

The optimality conditions, defined by the Lagrangian formulation

L(w, b, ξ; α,β) =
1

2
‖w‖2 + C

n∑

i=1

ξi −
n∑

i=1

αi{yi(〈w,xi〉 + b) − 1 + ξi} −
n∑

i=1

βiξi,

can be interpreted by nullifying the derivatives with respect to the primal and dual
variables:

∂

∂w
L(w, b, ξ; α,β) = 0 =⇒ w∗ =

n∑

i=1

α∗
i yi xi

∂

∂b
L(w, b, ξ; α,β) = 0 =⇒

n∑

i=1

α∗
i yi = 0

∂

∂ξ
L(w, b, ξ; α,β) = 0 =⇒ β∗

i = C − α∗
i

Injected in the Lagrangian expression, these relations provide the dual problem to be
solved.
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Support vector machines (soft margin)
Formulation of the dual problem and solution

The dual optimization problem is finally expressed as follows:

Minimize W (α) =
∑n

i=1
αi − 1

2

∑n

i,j=1
αi αj yi yj 〈xi,xj〉

subject to
∑n

i=1
αi yi = 0, 0 ≤ αi ≤ C, ∀i = 1, . . . , n.

The solution of the problem is finally written as

ψ(x; α∗, b∗) = sign

(
∑

sv

α∗
i yi 〈x,xi〉 + b∗

)

To determine b∗, we use the Karush-Kuhn-Tucker conditions:

α∗
i {yi(〈w∗,xi〉 + b∗) − 1 + ξ∗

i } = 0, β∗
i ξ

∗
i = 0.

For any support vector xi such as αi < C, we have ξi = 0 and b∗ = yi − 〈w∗,xi〉.
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Support vector machines (soft margin)
Choice of the parameter C

Minimize 1
2

‖w‖2 + C
∑n

i=1
ξi, C ≥ 0

subject to yi(〈w,xi〉 + b) ≥ 1 − ξi, ξi ≥ 0, 1 ≤ i ≤ n.

The parameter C makes a tradeoff between the width of the margin, which has a
regularizing role, and the number of misclassified samples.

Big C: small margin, less errors in classification

Small C: large margin, more errors in classification

The value of the parameter C can be determined by cross-validation.
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Examples of implementation

Examples of implementation

Bayes classifier Regression 0/1

1-ppv 15-ppv
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Examples of implementation

Examples of implementation
Support vector machines

SVM with C = 104

Learning error: 0.27

Test error: 0.29

Bayes: 0.21

SVM with C = 10−2

Learning error: 0.26

Test error: 0.30

Bayes: 0.21
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Nonlinear Support Vector Machines
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Nonlinear Support Vector Machines
From linear to nonlinear

Linear classifiers have limited classification capabilities. To remedy this, we can imple-
ment them after a nonlinear transformation of the data.

x −→ φ(x) = [φ1(x), φ2(x), . . .]t

where the ϕi(x) are the nonlinear functions that are chosen beforehand.

A classifier that is linear in φ(x) are nonlinear with respect to x
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Nonlinear Support Vector Machines
Example: polynomial classifier

Let x = [x(1) x(2) x(3)]t. Consider the following transformation:

φ1(x) = x(1) φ4(x) = x(1)2 φ7(x) = x(1) x(2)

φ2(x) = x(2) φ5(x) = x(2)2 φ8(x) = x(1) x(3)

φ3(x) = x(3) φ6(x) = x(3)2 φ9(x) = x(2) x(3)

A classifier, linear in the transformed space {φ(x)}
x∈IR3 , namely

ψ(x; w, b) = sign(〈w,φ(x)〉 + b),

is a polynomial classifier of degree 2 with respect to x.

x(1) x(1)

x(2) z

z = x(1)2 + x(2)2

The polynomial transformation makes the data linearly separable.
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Nonlinear Support Vector Machines
Optimization in a transformed space

The dual optimization problem is thus expressed as:

Minimize W (α) =
∑n

i=1
αi − 1

2

∑n

i,j=1
αi αj yi yj 〈φ(xi),φ(xj)〉

subject to
∑n

i=1
αi yi = 0, 0 ≤ αi ≤ C, ∀i = 1, . . . , n.

The solution can be written as

ψ(x; α∗, b∗) = sign

(
∑

sv

α∗
i yi 〈φ(x),φ(xi)〉 + b∗

)

.

We can see that

we never need to explicitly compute φ(x);

if x has a big dimension, the dimension of φ(x) is even bigger, sometimes infinite.

65 / 85



! Theory Regularization Algorithms: SVM Nonlinear SVM Python Epilogue !!

Nonlinear Support Vector Machines
The kernel trick

If you can define a kernel κ(xi,xj) = 〈φ(xi),φ(xj)〉 such that:

the associated decision rule is efficient

ψ(x; α∗, b∗) = sign

(
∑

sv

α∗
i yi κ(xi,xj) + b∗

)

,

it is easy to compute κ(xi,xj), even for large-dimension data,

then that’s it !
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Nonlinear Support Vector Machines
Polynomial kernels

In the case of a 2-degree polynomial transformation, it is easy to show that:

〈φ(x),φ(x′)〉 = (1 + 〈x,x′〉)2 , κ(x,x′)

⊲ The inner product can be computed in IR
2 !

More generally, one is interested in κ(x,x′) = (1 + 〈φ(x),φ(x′)〉)q , with x ∈ IRd.

κ(x,x′) = (1 + 〈x,x′〉)q =

q∑

j=0

(q

j

)
〈x,x′〉j .

Each component 〈x,x′〉j = [x(1) x′(1) + . . .+ x(d)x′(d)]j of this expression can be
expanded into a weighted sum of monomials of degree j of the form

[x(1)x′(1)]j1 [x(2) x′(2)]j2 . . . [x(d)x′(d)]jd

with
∑d

i=1
ji = j. This directly leads to the expression of φ(x)...
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The kernel trick
Mercer theorem

We are interested in the functions κ(x,x′) that can act as an inner product in a space
H. We call kernel a symmetric function κ from X × X dans IR.

Theorem (Mercer)

If κ is a continuous kernel of a positive definite integral operator, which means that

∫∫

ϕ(x) κ(x,x′)ϕ∗(x′) dx dx′ ≥ 0

for all ϕ ∈ L2(X ), it can be decomposed into the forme

κ(x,x′) =

∞∑

i=1

λi ψi(x)ψi(x
′),

where ψi and λi are the eigenfunctions (orthogonal) and eigenvalues (positive) of the
kernel κ, respectively, such that

∫

κ(x,x′)ψi(x) dx = λi ψi(x
′).
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The kernel trick
Mercer theorem

It is easy to see that a kernel κ satisfying Mercer’s theorem can act as a inner product
in a transformed space H. Just write:

φ(x) =

(√
λ1 ψ1(x)√
λ2 ψ2(x)

· · ·

)

In these conditions, we check that we have: 〈φ(x),φ(x′)〉 = κ(x,x′).

We define the space H as being generated by the eigenfunctions ψi of the kernel κ,
that is to say

H = {f(·) | f(x) =

∞∑

i=1

αi ψi(x), αi ∈ IR}.
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The kernel trick
Examples de Mercer kernels

We can show that the following kernels satisfy the Mercer condition, and therefore
correspond to an inner product in a space H.

Projective kernels
monomial of degree q 〈x,x′〉q
polynomial of degree q (1 + 〈x,x′〉)q

sigmoidal 1
η0

tanh(β0〈x,x′〉 − α0)

Radial kernels

Gaussian exp(− 1
2σ2

0

‖x − x′‖2)

exponential exp(− 1
2σ2

0

‖x − x′‖)

uniforme 1
η0

1l‖x−x
′‖≤β0

Epanechnikov 1
η0

(β2
0 − ‖x − x′‖2) 1l‖x−x

′‖≤β0

Cauchy 1
η0

1
1+‖x−x

′‖2/β2
0

... and more κ1(x,x′) + κ2(x,x′), κ1(x,x′) · κ2(x,x′), ...
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Nonlinear Support Vector Machines
Example of implementation

Polynomial kernel of degree 4 Gaussian kernel

Learning: 0.180
Test: 0.245
Bayes: 0.210

Learning: 0.160
Test: 0.218
Bayes: 0.210
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Python implementation
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Illustration of Maximum Margin Separating Hyperplane in SVM

Plot separating hyperplane

import numpy as np

import matplotlib. pyplot as plt

from sklearn import svm

from sklearn. datasets import make_blobs

# we create 40 separable points

X , y = make_blobs( n_samples=40 , centers=2, random_state=6)

# fit the model , don ’t regularize for illustration purposes

clf = svm .SVC( kernel=’ linear’, C =1000)

clf .fit(X, y)

plt . scatter(X[:, 0], X[:, 1], c=y, s=30 , cmap =plt .cm. Paired)

# plot the decision function

ax = plt .gca ()

xlim = ax. get_xlim()

ylim = ax. get_ylim()

# create grid to evaluate model

xx = np. linspace(xlim [0] , xlim [1] , 30)

yy = np. linspace(ylim [0] , ylim [1] , 30)

YY , XX = np. meshgrid(yy , xx)

xy = np. vstack([ XX. ravel(), YY. ravel()]).T

Z = clf. decision_function(xy). reshape(XX. shape)

# plot decision boundary and margins

ax.contour(XX , YY , Z, colors=’k’, levels=[-1, 0, 1], alpha=0.5 ,

linestyles=[ ’--’, ’-’, ’--’])

# plot support vectors

ax.scatter(clf . support_vectors_[:, 0], clf . support_vectors_[:, 1], s=100 ,

linewidth=1, facecolors=’none ’, edgecolors=’k’)

plt .show ()
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Margins for different C values

Plot SVM margin

# Code source : Gael Varoquaux

# Modified for documentation by Jaques Grobler

# License : BSD 3 clause

import numpy as np

import matplotlib . pyplot as plt

from sklearn import svm

# we create 40 separable points

np .random .seed (0)

X = np.r_[np.random .randn (20, 2)

- [2, 2], np.random . randn (20, 2) + [2, 2]]

Y = [0] * 20 + [1] * 20

# figure number

fignum = 1

# fit the model

for name , penalty in ((’unreg ’, 1), (’reg’, 0.05)):

clf = svm.SVC( kernel =’linear ’, C=penalty )

clf.fit(X, Y)

# get the separating hyperplane

w = clf.coef_ [0]

a = -w[0] / w[1]

xx = np.linspace (-5, 5)

yy = a * xx - (clf.intercept_ [0]) / w[1]

# plot the parallels to the separating hyperplane that pass

# through the support vectors (margin away from hyperplane

# in direction perpendicular to it ). This is sqrt (1+a^2) away

# vertically in 2-d.

margin = 1 / np.sqrt (np .sum(clf.coef_ ** 2))

yy_down = yy - np.sqrt (1 + a ** 2) * margin

yy_up = yy + np.sqrt (1 + a ** 2) * margin

# plot the line , points , and nearest vectors

plt.figure (fignum , figsize =(4, 3))

plt.clf()

plt.plot (xx , yy , ’k-’)

plt.plot (xx , yy_down , ’k--’)

plt.plot (xx , yy_up , ’k--’)

plt.scatter (clf. support_vectors_ [:, 0], clf. support_vectors_ [:, 1],

s=80, facecolors =’none ’, zorder =10, edgecolors =’k’)

plt.scatter (X[:, 0], X[:, 1], c=Y, zorder =10,

cmap=plt.cm .Paired , edgecolors =’k’)

plt.axis (’tight ’)

x_min = -4.8

x_max = 4.2

y_min = -6

y_max = 6

XX , YY = np .mgrid [x_min :x_max :200j, y_min :y_max :200j]

Z = clf.predict (np.c_[XX .ravel (), YY .ravel ()])

# Put the result into a color plot

Z = Z.reshape (XX.shape )

plt.figure (fignum , figsize =(4, 3))

plt. pcolormesh (XX , YY , Z, cmap =plt.cm .Paired )

plt.xlim (x_min , x_max )

plt.ylim (y_min , y_max )

plt.xticks (())

plt.yticks (())

fignum = fignum + 1

plt.show ()
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Nonlinear SVM
Plot SVM kernels

# Code source : Gael Varoquaux ; License : BSD 3 clause

import numpy as np
import matplotlib . pyplot as plt
from sklearn import svm

# Our dataset and targets
X = np.c_[(.4 , -.7),

(-1.5, -1),
(-1.4, -.9),
(-1.3, -1.2),
(-1.1, -.2),
(-1.2, -.4),

(-.5, 1.2) ,
(-1.5, 2.1) ,
(1, 1),
# --
(1.3 , .8),
(1.2 , .5),
(.2, -2),
(.5, -2.4),
(.2, -2.3),
(0, -2.7),
(1.3 , 2.1)]. T

Y = [0] * 8 + [1] * 8

fignum = 1 # figure number

# fit the model
for kernel in ( ’linear ’, ’poly ’, ’rbf ’):

clf = svm .SVC( kernel =kernel , gamma =2)

clf. fit(X , Y)

# plot the line, the points , and the nearest vectors to the plane
plt. figure ( fignum , figsize =(4, 3))
plt. clf ()

plt. scatter (clf . support_vectors_ [:, 0], clf. support_vectors_ [:, 1], s=80, facecolors = ’none ’, zorder =10, edgecolors =’k ’)
plt. scatter (X[:, 0], X[:, 1], c=Y, zorder =10, cmap =plt .cm.Paired , edgecolors =’k ’)

plt. axis (’tight ’)
x_min = -3
x_max = 3
y_min = -3
y_max = 3

XX , YY = np.mgrid [ x_min : x_max :200 j, y_min :y_max :200 j]
Z = clf. decision_function (np.c_[XX.ravel (), YY. ravel ()])

# Put the result into a color plot
Z = Z.reshape (XX. shape )
plt. figure ( fignum , figsize =(4, 3))
plt. pcolormesh (XX , YY , Z > 0, cmap =plt .cm.Paired )
plt. contour (XX , YY , Z, colors =[’k ’, ’k’, ’k ’], linestyles =[ ’-- ’, ’-’, ’--’], levels =[-.5, 0, .5])

plt. xlim (x_min , x_max )
plt. ylim (y_min , y_max )

plt. xticks (())
plt. yticks (())
fignum = fignum + 1

plt .show ()
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Nonlinear SVM on IRIS Dataset

Plot IRIS exercice

import numpy as np
import matplotlib . pyplot as plt
from sklearn import datasets , svm

iris = datasets . load_iris ()
X = iris . data

y = iris . target

X = X[y != 0, :2]
y = y[y != 0]

n_sample = len(X)

np. random .seed (0)
order = np. random . permutation (n_sample )
X = X[ order ]
y = y[ order ].astype (np.float )

X_train = X [:int (.9 * n_sample )]
y_train = y [:int (.9 * n_sample )]
X_test = X[ int (.9 * n_sample ):]
y_test = y[ int (.9 * n_sample ):]

# fit the model
for fig_num , kernel in enumerate (( ’linear ’, ’rbf ’, ’poly ’)):

clf = svm .SVC( kernel =kernel , gamma =10)
clf. fit( X_train , y_train )

plt. figure ( fig_num )
plt. clf ()
plt. scatter (X[:, 0], X[:, 1], c=y, zorder =10,

cmap = plt.cm. Paired , edgecolor =’k’, s=20)

# Circle out the test data
plt. scatter ( X_test [:, 0], X_test [:, 1], s=80,

facecolors =’none ’, zorder =10, edgecolor =’k’)

plt. axis (’tight ’)
x_min = X[:, 0]. min ()
x_max = X[:, 0]. max ()
y_min = X[:, 1]. min ()

y_max = X[:, 1]. max ()

XX , YY = np.mgrid [ x_min : x_max :200 j, y_min :y_max :200 j]
Z = clf. decision_function (np.c_[XX.ravel (), YY. ravel ()])

# Put the result into a color plot
Z = Z.reshape (XX. shape )
plt. pcolormesh (XX , YY , Z > 0, cmap =plt .cm.Paired )
plt. contour (XX , YY , Z, colors =[’k ’, ’k’, ’k ’],

linestyles =[ ’-- ’, ’-’, ’--’], levels =[-.5, 0, .5])

plt. title (kernel )
plt .show ()
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Parameters of RBF SVM
Plot RBF parameters

import numpy as np
import matplotlib .pyplot as plt
from matplotlib . colors import Normalize

from sklearn .svm import SVC
from sklearn . preprocessing import StandardScaler
from sklearn . datasets import load_iris
from sklearn . model_selection import StratifiedShuffleSplit
from sklearn . model_selection import GridSearchCV

# Utility function to move the midpoint of a colormap to be around
# the values of interest .
class MidpointNormalize (Normalize ):

def __init__ (self , vmin = None , vmax =None , midpoint = None , clip = False ):
self . midpoint = midpoint
Normalize .__init__ ( self , vmin , vmax , clip )

def __call__ (self , value , clip = None ):
x, y = [ self. vmin , self . midpoint , self. vmax ], [0, 0.5, 1]
return np.ma.masked_array (np.interp (value , x, y))

# #############################################################################
# Load and prepare data set:
# dataset for grid search

iris = load_iris ()
X = iris . data
y = iris . target

# Dataset for decision function visualization : we only keep the first two
# features in X and sub- sample the dataset to keep only 2 classes and
# make it a binary classification problem .

X_2d = X[:, :2]
X_2d = X_2d [y > 0]
y_2d = y[y > 0]
y_2d -= 1

# It is usually a good idea to scale the data for SVM training .
# We are cheating a bit in this example in scaling all of the data ,
# instead of fitting the transformation on the training set and
# just applying it on the test set.

scaler = StandardScaler ()
X = scaler . fit_transform (X)
X_2d = scaler . fit_transform ( X_2d )
# #############################################################################
# Train classifiers :
# For an initial search , a logarithmic grid with basis 10 is often helpful .
# Using a basis of 2, a finer tuning can be achieved but at a much higher cost.

C_range = np. logspace (-2, 10, 13)
gamma_range = np. logspace (-9, 3, 13)
param_grid = dict ( gamma =gamma_range , C= C_range )
cv = StratifiedShuffleSplit( n_splits =5, test_size =0.2 , random_state =42)
grid = GridSearchCV (SVC (), param_grid = param_grid , cv=cv)
grid .fit(X, y)

print ("The best parameters are %s with a score of %0.2 f"
% ( grid .best_params_ , grid . best_score_ ))

# Now we need to fit a classifier for all parameters in the 2d version
# ( we use a smaller set of parameters here because it takes a while to train )

C_2d_range = [1e-2, 1, 1e2]
gamma_2d_range = [1e -1, 1, 1 e1]
classifiers = []
for C in C_2d_range :

for gamma in gamma_2d_range :
clf = SVC (C=C, gamma = gamma )
clf. fit(X_2d , y_2d )
classifiers . append ((C, gamma , clf ))

# #############################################################################
# Visualization :
# draw visualization of parameter effects

plt. figure ( figsize =(8, 6))
xx , yy = np. meshgrid (np. linspace (-3, 3, 200) , np.linspace (-3, 3, 200))
for (k , (C, gamma , clf )) in enumerate ( classifiers ):

# evaluate decision function in a grid
Z = clf. decision_function ( np. c_[xx.ravel (), yy.ravel ()])
Z = Z.reshape (xx. shape )

# visualize decision function for these parameters
plt. subplot (len( C_2d_range ), len( gamma_2d_range ), k + 1)
plt. title ("gamma =10^% d, C =10^% d" % (np. log10 (gamma ), np. log10 (C)),

size =’medium ’)

# visualize parameter ’s effect on decision function
plt. pcolormesh (xx , yy , -Z, cmap =plt.cm. RdBu )
plt. scatter (X_2d [:, 0], X_2d [:, 1], c=y_2d , cmap = plt.cm.RdBu_r ,

edgecolors = ’k ’)
plt. xticks (())
plt. yticks (())
plt. axis (’tight ’)

scores = grid . cv_results_ [’mean_test_score ’].reshape ( len( C_range ), len( gamma_range ))

# Draw heatmap of the validation accuracy as a function of gamma and C:
# The score are encoded as colors with the hot colormap which varies from dark
# red to bright yellow . As the most interesting scores are all located in the
# 0.92 to 0.97 range we use a custom normalizer to set the mid- point to 0.92 so
# as to make it easier to visualize the small variations of score values in the
# interesting range while not brutally collapsing all the low score values to
# the same color .

plt. figure ( figsize =(8, 6))
plt. subplots_adjust ( left =.2, right =0.95 , bottom =0.15 , top =0.95)
plt. imshow ( scores , interpolation = ’nearest ’, cmap =plt.cm.hot ,

norm = MidpointNormalize ( vmin =0.2 , midpoint =0.92))
plt. xlabel ( ’gamma ’)
plt. ylabel ( ’C ’)
plt. colorbar ()
plt. xticks (np. arange ( len( gamma_range )), gamma_range , rotation =45)
plt. yticks (np. arange ( len( C_range )), C_range )
plt. title (’Validation accuracy ’)
plt. show ()

Output

The best parameters are ’C’: 1.0, ’gamma’: 0.1 with a score of 0.97
78 / 85

https://scikit-learn.org/stable/auto_examples/svm/plot_rbf_parameters.html


! Theory Regularization Algorithms: SVM Nonlinear SVM Python Epilogue !!

Outline

1 Prologue

2 Elements of statistical learning theory

3 Ill-posed problems and regularization

4 Algorithms: Support Vector Machines

5 Nonlinear Support Vector Machines

6 Python implementation

7 Epilogue

8 Final Remark

79 / 85



! Theory Regularization Algorithms: SVM Nonlinear SVM Python Epilogue !!

Epilogue

80 / 85



! Theory Regularization Algorithms: SVM Nonlinear SVM Python Epilogue !!

Assessment on the SVM

Compared to competing techniques such as neural networks, SVMs have great qualities:

1 Unique solution
−→ Quadratic problem

2 Integrated regularization process, sparse solution
−→ Cost function and resulting inequality constraints

3 Easy extension to the non-linear case, non black-box solution
−→ Kernel trick
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Concluding remarks
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Final Remark
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