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Abstract
We propose a method for tuning time-frequency distributions with radially Gaussian kernel
within a classification framework. It is based on a criterion that has recently emerged from
the machine learning literature: the kernel-target alignement. Our optimization scheme is very
similar to that proposed by Baraniuk and Jones for signal dependent time-frequency analysis.
The relevance of this approach of improving time-frequency classification accuracy is illustrated
through examples.

Time-Frequency Kernel Machines
Time-frequency distributions : Cohen’s class is defined by the distributions of the form

CΦ
x (t, f ) =

∫∫
Φ(ν, τ ) Ax(ν, τ ) e−2jπ(fτ+νt) dν dτ,

where Ax(ν, τ ) denotes the narrow-band ambiguity function of x, and Φ(ν, τ ) is a parameter
function, both expressed in rectangular coordinates.

Tunable distributions : While the two-dimensional function Φ determines the properties
of the distribution, one often seeks to parameterize it with a one-dimensional function, say
σ, and denote it Φσ. This is the essence of the RGK time-frequency distribution.

RGK time-frequency distribution : The parameter function is defined by

Φσ(r, θ) = e−r2/2σ2(θ),

in polar coordinates, with θ = arctan(τ/ν) and r =
√

ν2 + τ2. The function σ(·) is called
the spread function. It determines the shape of Φσ in the ambiguity plane, and thus the
properties of the time-frequency distribution.

Kernel machines : Kernel machines are non-linear pattern recognition techniques obtained
from classical linear ones by using the kernel trick and a reproducing kernel. The latter cor-
responds to an inner product in a transformed space. Taking advantage of new theoretical
advances, kernel machines are attractive by their reduced algorithmic complexity, mainly
due to the kernel trick. This key idea exploits the fact that a great number of pattern
recognition techniques does not depend explicitly of the data itself, but rather of their in-
ner products. A generalization of these are the reproducing kernels, corresponding to an
inner product of implicitly transformed data, while every reproducing kernel determines the
transformation, up to a unitary transformation.

Time-frequency kernel machines : Cohen’s class distributions are specific signal trans-
formations. Given any pair of signals (xi, xj), the reproducing kernel associated to such
spaces of transformations can be expressed by

κ(xi, xj) =

∫∫
|Φ(ν, τ )|2 Axi(ν, τ ) Axj(ν, τ ) dν dτ,

in rectangular coordinates, or equivalently in polar coordinates

κ(xi, xj) =

∫∫
r |Φ(r, θ)|2 Axi(r, θ) Axj(r, θ) dr dθ.

RKG reproducing kernel :

κσ(xi, xj) =

∫∫
r Axi(r, θ) Axj(r, θ) e

− r2

σ2(θ) dr dθ.

The use of this reproducing kernel allows a wide class of pattern recognition methods to op-
erate on the RGK distribution, as previously studied for other time-frequency distributions.

In what follows, we consider a criterion initially proposed within the framework of kernel ma-
chines, in order to optimize the parameters of the RGK reproducing kernel, and therefore
the corresponding RGK distribution.

Kernel-target alignment
Classification of signals : Consider a 2-class classification problem of signals, from a

training set {(x1, y1), · · · , (xn, yn)} of n signals xk with their labels yk = ±1. Let Kσ
be the Gram matrix of the training set, whose (i, j)-th entry is κσ(xi, xj), and Kt the tar-
get matrix whose (i, j)-th entry is yiyj (product of the outputs of the ideal classifier, given
the input xi and xj).

Kernel-target alignment score : To measure the similarity between the reproducing
kernel and the class labels, we consider the kernel-target alignment, defined by

A(Kσ,Kt) =
〈Kσ,Kt〉F

‖Kσ‖F‖Kt‖F
, (1)

where 〈·, ·〉F designates Frobenius scalar product, and ‖ · ‖F its norm.

Kernel-target alignment criterion : Cristianini et al. proposed to select appropriate
reproducing kernels by maximizing this score. Theoretical and experimental results show
that good generalization performance may be expected by using kernels with large align-
ment score. Note that this criterion does not require any computational intensive stage for
designing and testing classifiers.

Classification-Dependent
Time-Frequency Distribution

Optimal RGK time-frequency distribution : The optimal spread function σ∗(·) is
determined by maximizing the alignment score, with σ∗ = arg maxσ A(Kσ,Kt).

Constrained optimization problem : The optimization problem above is equivalent to
maximizing the numerator of (1) subject to a constant denominator, namely,

max
σ

n∑

i,j=1

yi yj κσ(xi, xj) subject to
n∑

i,j=1

κσ(xi, xj)
2 = V0, (2)

where V0 is a preset normalization parameter.

Objective functional : By expanding (2), we can write

n∑

i,j=1

yi yj κσ(xi, xj) =

∫∫
r
[ n∑

i,j=1

yi yj Axi(r, θ) Axj(r, θ)
]

e
− r2

σ2(θ) dr dθ.

We obtain the same form of objective functional to be maximized as the one ob-
tained by Baraniuk and Jones for signal dependent time-frequency analysis, which was∫∫

r|Ax(r, θ)|2 e−r2/σ2(θ) dr dθ, where the signal dependent term |Ax(r, θ)|2 is substituted
by the equivalent representation

∑
i,j yiyj Axi(r, θ) Axj(r, θ). Since the latter depends only

on the training signals and their labels, we can evaluate it prior to any optimization scheme.
Exactly the same algorithm previously proposed for signal analysis can then be used to
solve this problem, for signal classification purpose. In particular, we relax the computa-
tionally expensive constraint in (2) by substituting it with a constraint on the volume of the
parameter function, i.e.,

∫
σ2(θ)dθ = V ′

0 as recommended by Baraniuk and Jones.

The algorithm :

Initialisation
Compute the equivalent representation of the training set :

Ψ(r, θ) =
∑n

i,j=1 yi yj Axi(r, θ) Axj(r, θ)

At each iteration k + 1, repeat
1.Evaluate the gradient of the functional at the spread vector

∇fσ =
[

∂fσ
∂σ(0), · · · , ∂fσ

∂σ(l−1)

]
, where ∂fσ

∂σ(θ) = 2∆2
r

σ3(θ)

∑
r r3 Ψ(r, θ) e−(r ∆r)2/σ2(θ)

2.Update the spread vector with a gradient ascent scheme :σk+1 = σk + µk ∇fσk

3.Project into feasible set by rescaling : σk+1 = σk+1 · V ′
0/‖σk+1‖2.

Simulations

We illustrate the proposed approach with two classification problems.
They consist of two sets of 200 signals of 64 samples with a linear fre-
quency modulation (chirp), in an additive white Gaussian noise of vari-
ance 4. In the first case, signals have an increasing modulation (in nor-
malized frequency), from 0.1 to 0.25 for the first class, and from 0.25 to
0.4 for the second one. In the second case, the signals have an increasing
modulation for the first class, from 0.1 to 0.4, and a decreasing modu-
lation, from 0.4 to 0.1 for the second class. By applying the proposed
optimization algorithm to each case, we got optimal RGK functions that
correspond to relevant regions, in terms of classification, of the ambiguity
domain. This is represented in Figure (a) and in Figure (b).

The relevance of using the kernel-target alignment criterion to improve
classification is illustrated with an SVM classifier associated with the
Wigner distribution or the optimal RGK distribution, for each studied
case. In the tables, we represent the error rate, estimated on a test
set of 2000 signals, and the number of support vectors, both averaged
over 20 realizations. Note that the optimal RGK distribution minimizes
the classification error, and also results in almost half the number of
support vectors as compared to the Wigner distribution. This is mainly
due to the optimality of the resulting distribution on the one hand, and
on the other hand to its regularity, i.e., robustness caused by reduced
interference terms.
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(a) (b)

Error rate (%) Number of SV

Wigner distribution 23.9 ± 1.3 172.6 ± 5.5

Optimal distribution 21.4 ± 2.0 87.5 ± 4.1

Error rate (%) Number of SV

Wigner distribution 19.4 ± 1.5 163.7 ± 4.6

Optimal distribution 17.8 ± 1.5 84.5 ± 6.1


