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ABSTRACT ing solution has recently been developed within the area of

In this paper, we propose a method for selecting time-frequency disr_nachlne learning through the concept of kernel-targenalig

tributions appropriate for given learning tasks. It is based on a criter-nent [11]_' This criterion m,akes poss,'t,"e FO find the Opt"_nal
rion that has recently emerged from the machine learning literaturd®Producing kemel for a given classification problem with-
the kernel-target alignment. This criterion makes possible to findUt designing the classifier itself. In this paper, we discus
the optimal representation for a given classification problem withihree applications of the alignment criterion to selectetim
out designing the classifier itself. Some possible applications of ouirequency distributions that best suit a classificatiok.td$ie
framework are discussed. The first one provides a computationallfirst one provides a computationally attractive way of adjus
attractive way of adjusting the free parameters of a distribution tang the free parameters of a distribution. The second one is
improve classification performance. The second one is related to th@|ated to the selection of the best distribution from a et o
s_e_lectlon, from a se_t of candidates, of the distribution that best fasgndidate distributions. The last one addresses the proble
cilitates a classification task. The last one addresses the problem gf i aly combining several distributions to achieve-im
optimally combining several distributions. . o

provements in classification performance.

1. INTRODUCTION 2. BACKGROUND ON KERNEL MACHINES

Time-frequency and time-scale distributions provide a Pow |, this section, we concisely review the fundamental baoidi
erful tool for analyzing nonstationary signals. They can b&,|qcks of kernel machines, mainly the definition of reproduc
set up to support a wide range of tasks depending on thgy kernel Hilbert spaces, the kernel trick and the repriesen
user’s information need. As an example, there exist class@fagrem. Lett be a subspace df,(C), the space of finite-
of distributions that are relatively immune to interfererand energy complex signals. A kernel is a functiefrom ' x X
noise for analysis purpose [1, 2, 3]. There are also distrigy ¢ \yith hermitian symmetry. The following two definitions

butions that maximize a contrast criterion between Classeﬁrovide the basic concept of reproducing kernels [12].
to improve classification accuracy [4, 5, 6]. Over the last

decade, a number of new pattern recognition methods bas@kfinition 1. A kernelx(z;, z;) is said to be positive definite

on reproducing kernels have been introduced. The most popn X’ if the following is true:

ular ones are SVM, kernel-FDA and kernel-PCA [7]. They .

have gained wide popularity due to their conceptual simplic - _

ity and their outstanding performance [8]. Despite these ad > D aidKlaia;) 20,

vances, there are few papers other than [9, 10] associating

time-frequency analysis with kernel machines. Cleartyeti  forall n € IN, 21, ..., 2, € X, anday, ..., an, € C.

frequency analysis still has not taken advantage of these ne

information extraction methods, although many effortsehav Definition 2. Let (%, (-, -)#) be a Hilbert space of functions

been focused to develop task-oriented signal represengati  from A’ to €. The functions(z;, z;) from X' x X to C is the
We begin this paper with a brief review of the relatedreproducing kernel of{ if, and only if,

work [10]. We show how the most effective and innovative e the functions,, : z; — kg, (z;) = k(x;,z;) isinH,

kernel machines can be configured, with a proper choice of forall z; € X;

reproducing kernel, to operate in the time-frequency damai o (i) = (K, (-), (), forall z; € X andyy € H.

In the above cited paper, however it was posed as an open !

guestion how to objectively pick time-frequency distribats It can be shown that every positive definite kernel is theaepr

that best facilitate the classification task at hand. Anrege  ducing kernel of a unique Hilbert space of functions frém

@)

i=1 j=1



to C, calledreproducing kernel Hilbert spaceReciprocally, computationally demanding because the sizeC8f grows
every reproducing kernel is a positive definite kernel. Agfro quadratically in the length of the input signal Faced with

of this may be found in [12]. From the second point of defi-such prohibitive computational costs, an attractive aftéve
nition 2 results a fundamental property of reproducing &ern is to make use of the kernel trick and the representer theorem
Hilbert space. Replacing(-) by ., (-), we obtain if possible, with the following kernel

K@i, 1) = (s (), i, () ) Ko (i, 2;) = (Cy, Cy)- @)

for all 2;, #; € X, which is the origin of the now generic Writing condition (1) as| 3=, a; Cy ||* > 0, which is indeed
term reproducing kerneto refer tox. Denoting byy(-) the  satisfied, we verify thaks is a positive definite kernel. We
map that assigns to eaatthe kernel function:(-, z), equa- denote byHs the unique reproducing kernel Hilbert space
tion (2) implies thak(z;, z;) = (¢(x;), ¢(x;))n. Thekernel — associated withe. This argument shows that (7) can be as-
then evaluates the inner product of any pair of elementk of sociated with any kernel machine reported in the literature
mapped taH without any explicit knowledge op(-). This  to perform pattern recognition in the time-frequency damai
key idea is known as theernel trickbecause it can be used to Thanks to the representer theorem, the soluibfx) admits
transform linear algorithms expressed only in terms of innea time-frequency interpretation,” () = (¥*, C7), with
products into nonlinear ones. n

The representer theorem [13], like the kernel trick, is a U — Za? ce. 8)
quintessential building block for kernel machines. Coesid =1
a training setA,, consisting ofn input-output pairgz;, ;).
This theorem states that any functigni(-) of H minimizing
a regularized cost function of the form

J((*Tlvyla 1/)(1’1))’ Tt (xn7yn7w(xn))) + g(”d’H%—t% (3)

with g(-) a monotone increasing function @, can be ex-
pressed as a kernel expansion in terms of available data  The alignment criterion is a measure of similarity between
n two reproducing kernels, or between a reproducing kerrel an
W (z) = Z al K(z, ;). @4 a target function [11_]. Gi\_/en a training sdt,, the alignment
of kernelsk; andx- is defined as follows

This equation is obtained by combining (4) and (6). The ques-
tion of how to selecC? is still open. The next section brings
some elements of answer in a binary classification framework

4. KERNEL-TARGET ALIGNMENT

i=1

Applications of this theorem include SVM, kernel-PCA and Akr, k23 An) = (K1, Ko)r )

kernel-FDA [7]. In the next section, we show how kernel ma- B VK1, K1) (K2, Ka) ’
chines can be configured, with a proper choice of reproducin

kernel, to operate in the time-frequency domain.

%here(- , ) is the Frobenius inner product between two ma-
trices, andk; and K, are the Gram matrices with respective
entriesky (x;, x;) etra(x;, x;), foralls, j € {1,...,n}. The

3. TIME-FREQUENCY REPRODUCING KERNELS alignment then is simply the correlation coefficient betwee

F f . rict | ot hthe bidimensional vector&; et K.
Or reasons of conciseness, we restrict ourselves to therCo For binary classification purpose, the decision statistic

class of time-frequency distributions. They can be defireed ashould satisfy(x;) = yi, wherey, is the class label of;.
By settingy; = +1, the ideal Gram matrix would be given by

Co (1, 1) = / / B(v,7) An(v,7) e TUTHD 4y dr, (5)
K (i) = (0@ v = { (10

where A, (v, 7) denotes the narrow-band ambiguity function it i # Y5,

'?ef ?’; Zgg@n(.?c;); i ﬁﬁﬁmsterl.zéng.“gzt'l Ct(())r:_vne]gtlonalcpat-m which case\/(K*, K*)r = n. In [11], Cristianiniet al.
rnrecognit gorithms appl irectly to time-fueqcy propose maximizing the alignment with the tardét in or-

representations consist of estimatiiig(, f) in the statistics der to determine the most relevant reproducing kernel for a

given classification task. The ease with which this criterio
P (x) = (", Cp) = // U(t, f)C(t, f)dtdf  (6)  can be estimated using only training data, prior to any com-
putationally intensive training, makes it an interestiongl for
to optimize a criterion of the general form (3). Examples ofkernel selection. Its relevance is supported by the exjstin
cost functions include the maximum output variance for PCAconnection between the alignment score and the generaliza-
the maximum margin for SVM, and the maximum Fishertion performance of the resulting classifier. This has mo-
criterion for FDA. It is apparent that this direct approash i tivated various computational methods of optimizing kérne



alignment, including metric learning [14], eigendeconipos
tion of the Gram matrix [11, 15] and linear combination of
kernels [16, 17]. We will focus on the latter of these issues,
which consider the kernel expansion

alignment

alignment
error rate

error rate

Ka(Ti, 7;) Zam i, T;) (11) j

and study the problem of choosing thg’s to maximize the —

kernel-target alignment. A positivity constraint on these B R I T

window length

efficients is imposed to ensure the positive definiteness, of 1 Adiustment of the window size of . g thed
justment o € window size of a spectrogram using the &ern

Some more or less efficient algorithms have been proposed {gf et alignment. Comparison with the error rate of a SVM dfi@ss

the literature. In [16, 18], it has been shown that a concise

analytical solution exists in the. = 2 case: and white with variances? ando?, respectively. They were
_ fixed t02.25 for the first two experiments, angl, was con-
o (a1, ) sian,az >0 sidered a random variable uniformly distributed of@&Rx].
(af,03) = ¢ (1,0)  sia <0 (12) " In the third experimentg? and o? were set tod and4, re-
(0,1)  siag <0, spectively, andp, was fixed to0. For each experiment, a
. training setdsgo of size200 was generated with equal priors.
with A test setTiqo of 1000 | | ted to esti
1Ky, K p — 2(Ky, Ka) pa est setTig00 Of 1000 examples was also created to esti-
o= IS mate the generalization performance of kernel-optimal SVM
F

classifiers trained onlygg.
L (| K17 + N (Ko, K*)p — (K1, Ko) p (K1, K*) P

2 (K3 + V(K% + ) — (K, K2)% ' 5.1 Parameter setting

yvhere/\Qz 0 arises _from a regularization constraint penaliz-rye firo¢ jiystration deals with parameter setting of time-
ing ||a||*. To combine more thad kernels, we opted for a

X frequency distributions. Without any loss of generalityg w
branch and boundpproach. It starts from the best ava'labl,eﬁddress the problem of adjusting the window size of a spec-

Eerr:gl, and seletﬁts f:_om the trerrlltalr?lng I_T_(:‘rnels thedo:ee ,Wh'c ogram.S, with a view to maximize classification accuracy.
estincreases the alighment criterion. - 1NIS proceduliens |- o reproducing kernel is then defined as
ated until no improving candidates can be found.

Qo =

HSp(xi’xj) = <S‘LL7S‘LJ> (15)
5. TIME-FREQUENCY FORMULATION

Figure 1 shows, as a function of the window size, the kernel-
By placing time-frequency based classification within thetarget alignment oks, over the training setlsq. It also in-
larger framework of kernel machines, we can take advantaggudes the error rate of a SVM classifier trained and tested
of concepts and tools that have been developed above. In thig Ao and7ig0, respectively. We note that the maximum
section, we focus on selecting time-frequency distrimgio alignment is obtained with a window size®#, and coincides
appropriate for binary classification tasks. That is, we-conwith the lowest error rate. This shows that with a high align-
sider the maximization problem ment on the training set, we can expect a good generalization

performance of a kernel-based classifier.

Kg,K*
®* = arg max M, (13)
* ny/(Ke, Ka)r .
Ksp
where K is the Gram matrix associated wifii®. We also bl Krigh
discuss how to improve performance by optimally combining Rspwfow
several time-frequency distributions. o
. . ©
Before proceeding, note that the experiments were run on |
64-sample data generated according to the hypothesis test %
wo : x(t) = wo(t) Kmh
{ w1 (t) = wi(t) + 26O +00] (14) .

where¢(t) is a quadratic phase modulation apglthe initial S e e o ew o o

phase. The noises(t) andw;(t) are zero-mean, Gaussian alignment
Fig. 2. Alignment and error rate for different kernels.



Fig. 3. Smoothed pseudo-Wigner (left), Wigner (middle), and contpasssociated with the kernespwy + 0.208 kwy (right). Here these distributions are

applied to the signal to be detected.
5.2. Selection of a distribution

The second illustration is concerned with the selection of
distribution from a set of candidates. The latter consi$ts o
the following distributions: Wigner«,), smoothed pseudo-
Wigner (sspwv), Margenau-Hill gmp), Choi-Williams ¢cw),
Born-Jordan £y;), reduced interference with Hanning win-
dow (krign), and spectrogramkp). Figure 2 shows the per-
formance averaged ovél independent realizations of the
training and test sets. It provides the alignment of the abov
mentioned kernels ovedyqg, versus the error rate of a SVM
classifier trained and tested otygo and 7190, respectively.
The apparent relationship between these two criteria empha (5
sizes once more the relevance of the kernel-target alighmen

(1]

(2]

(4]
(5]

(6]

5.3. Combination of distributions

The last illustration focuses on the combination of time-
frequency distributions to achieve improvements in cfassi
cation performance. This problem was addressed with the
kernel-based process (11)-(12), which was applied to the
above-described set of candidate distributions. Kerngls,
andryy were successively selected. The kernel-target align- (g
ment increased from.1039 to 0.1076, while the error rate

of the SVM classifier reduced froh 7% to 3.2%. Figure 3
presents the composite time-frequency distribution, iadpl
here to the signal to be detected.

Another experimentation was carried out by adding the
short-time Fourier transform to the above-mentioned set of
quadratic distributions. Note thaty(z;, x;) = (x;, x;) for
a normalized window. Kernelssy and kspwy Were succes-
sively chosen, for a final alignment 6f1698 and an error
rate of2.7%. This result is consistent with statistical decision [14]
theories since the log-likelihood ratio for the detectioolp
lem under consideration involves both linear and quadraticis
components of the observation.

[7]

8 ]

[20]
[11]

[12]

[13]

[16]
6. CONCLUSION

In this paper, we showed that specific reproducing kernels al 7]
low any kernel machine to operate on time-frequency repre-
sentations. We also proposed a method, based on the kerneltsl
target alignment, for selecting or combining time-frequen

distributions to achieve improvements in classificatioriqgre
mance. All these links offer new perspectives in the field of
%on—stationary signal analysis since they provide an adoes
the most recent methodological and theoretical developsnen
of pattern recognition and statistical learning theory.
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