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ABSTRACT

In this paper, we propose a method for selecting time-frequency dis-
tributions appropriate for given learning tasks. It is based on a crite-
rion that has recently emerged from the machine learning literature:
the kernel-target alignment. This criterion makes possible to find
the optimal representation for a given classification problem with-
out designing the classifier itself. Some possible applications of our
framework are discussed. The first one provides a computationally
attractive way of adjusting the free parameters of a distribution to
improve classification performance. The second one is related to the
selection, from a set of candidates, of the distribution that best fa-
cilitates a classification task. The last one addresses the problem of
optimally combining several distributions.

1. INTRODUCTION

Time-frequency and time-scale distributions provide a pow-
erful tool for analyzing nonstationary signals. They can be
set up to support a wide range of tasks depending on the
user’s information need. As an example, there exist classes
of distributions that are relatively immune to interference and
noise for analysis purpose [1, 2, 3]. There are also distri-
butions that maximize a contrast criterion between classes
to improve classification accuracy [4, 5, 6]. Over the last
decade, a number of new pattern recognition methods based
on reproducing kernels have been introduced. The most pop-
ular ones are SVM, kernel-FDA and kernel-PCA [7]. They
have gained wide popularity due to their conceptual simplic-
ity and their outstanding performance [8]. Despite these ad-
vances, there are few papers other than [9, 10] associating
time-frequency analysis with kernel machines. Clearly, time-
frequency analysis still has not taken advantage of these new
information extraction methods, although many efforts have
been focused to develop task-oriented signal representations.

We begin this paper with a brief review of the related
work [10]. We show how the most effective and innovative
kernel machines can be configured, with a proper choice of
reproducing kernel, to operate in the time-frequency domain.
In the above cited paper, however it was posed as an open
question how to objectively pick time-frequency distributions
that best facilitate the classification task at hand. An interest-

ing solution has recently been developed within the area of
machine learning through the concept of kernel-target align-
ment [11]. This criterion makes possible to find the optimal
reproducing kernel for a given classification problem with-
out designing the classifier itself. In this paper, we discuss
three applications of the alignment criterion to select time-
frequency distributions that best suit a classification task. The
first one provides a computationally attractive way of adjust-
ing the free parameters of a distribution. The second one is
related to the selection of the best distribution from a set of
candidate distributions. The last one addresses the problem
of optimally combining several distributions to achieve im-
provements in classification performance.

2. BACKGROUND ON KERNEL MACHINES

In this section, we concisely review the fundamental building
blocks of kernel machines, mainly the definition of reproduc-
ing kernel Hilbert spaces, the kernel trick and the representer
theorem. LetX be a subspace ofL2(C), the space of finite-
energy complex signals. A kernel is a functionκ fromX ×X
to C, with hermitian symmetry. The following two definitions
provide the basic concept of reproducing kernels [12].

Definition 1. A kernelκ(xi, xj) is said to be positive definite
onX if the following is true:

n
∑

i=1

n
∑

j=1

ai aj κ(xi, xj) ≥ 0, (1)

for all n ∈ IN, x1, . . . , xn ∈ X , anda1, . . . , an ∈ C.

Definition 2. Let (H, 〈· , ·〉H) be a Hilbert space of functions
fromX to C. The functionκ(xi, xj) fromX × X to C is the
reproducing kernel ofH if, and only if,

• the functionκxi
: xj 7→ κxi

(xj) = κ(xi, xj) is in H,
for all xi ∈ X ;

• ψ(xi) = 〈κxi
(·), ψ(·)〉H, for all xi ∈ X andψ ∈ H.

It can be shown that every positive definite kernel is the repro-
ducing kernel of a unique Hilbert space of functions fromX



to C, calledreproducing kernel Hilbert space. Reciprocally,
every reproducing kernel is a positive definite kernel. A proof
of this may be found in [12]. From the second point of defi-
nition 2 results a fundamental property of reproducing kernel
Hilbert space. Replacingψ(·) by κxj

(·), we obtain

κ(xi, xj) = 〈κxi
(·), κxj

(·)〉H (2)

for all xi, xj ∈ X , which is the origin of the now generic
term reproducing kernelto refer toκ. Denoting byϕ(·) the
map that assigns to eachx the kernel functionκ(·, x), equa-
tion (2) implies thatκ(xi, xj) = 〈ϕ(xi), ϕ(xj)〉H. The kernel
then evaluates the inner product of any pair of elements ofX
mapped toH without any explicit knowledge ofϕ(·). This
key idea is known as thekernel trickbecause it can be used to
transform linear algorithms expressed only in terms of inner
products into nonlinear ones.

The representer theorem [13], like the kernel trick, is a
quintessential building block for kernel machines. Consider
a training setAn consisting ofn input-output pairs(xi, yi).
This theorem states that any functionψ∗(·) of H minimizing
a regularized cost function of the form

J((x1, y1, ψ(x1)), . . . , (xn, yn, ψ(xn))) + g(‖ψ‖2
H), (3)

with g(·) a monotone increasing function onIR+, can be ex-
pressed as a kernel expansion in terms of available data

ψ∗(x) =

n
∑

i=1

a∗i κ(x, xi). (4)

Applications of this theorem include SVM, kernel-PCA and
kernel-FDA [7]. In the next section, we show how kernel ma-
chines can be configured, with a proper choice of reproducing
kernel, to operate in the time-frequency domain.

3. TIME-FREQUENCY REPRODUCING KERNELS

For reasons of conciseness, we restrict ourselves to the Cohen
class of time-frequency distributions. They can be defined as

CΦ
x (t, f) =

∫∫

Φ(ν, τ)Ax(ν, τ) e−2jπ(fτ+νt) dν dτ, (5)

whereAx(ν, τ) denotes the narrow-band ambiguity function
of x, andΦ(ν, τ) is a parameter function. Conventional pat-
tern recognition algorithms applied directly to time-frequency
representations consist of estimatingΨ∗(t, f) in the statistics

ψ∗(x) = 〈Ψ∗, CΦ
x 〉 =

∫∫

Ψ∗(t, f)CΦ
x (t, f) dt df (6)

to optimize a criterion of the general form (3). Examples of
cost functions include the maximum output variance for PCA,
the maximum margin for SVM, and the maximum Fisher
criterion for FDA. It is apparent that this direct approach is

computationally demanding because the size ofCΦ
x grows

quadratically in the length of the input signalx. Faced with
such prohibitive computational costs, an attractive alternative
is to make use of the kernel trick and the representer theorem,
if possible, with the following kernel

κΦ(xi, xj) = 〈CΦ
xi
, CΦ

xj
〉. (7)

Writing condition (1) as‖
∑

i ai C
Φ
xi
‖2 ≥ 0, which is indeed

satisfied, we verify thatκΦ is a positive definite kernel. We
denote byHΦ the unique reproducing kernel Hilbert space
associated withκΦ. This argument shows that (7) can be as-
sociated with any kernel machine reported in the literature
to perform pattern recognition in the time-frequency domain.
Thanks to the representer theorem, the solutionψ∗(x) admits
a time-frequency interpretation,ψ∗(x) = 〈Ψ∗, CΦ

x 〉, with

Ψ∗ =

n
∑

i=1

a∗i C
Φ
xi
. (8)

This equation is obtained by combining (4) and (6). The ques-
tion of how to selectCΦ

x is still open. The next section brings
some elements of answer in a binary classification framework.

4. KERNEL-TARGET ALIGNMENT

The alignment criterion is a measure of similarity between
two reproducing kernels, or between a reproducing kernel and
a target function [11]. Given a training setAn, the alignment
of kernelsκ1 andκ2 is defined as follows

A(κ1, κ2;An) =
〈K1,K2〉F

√

〈K1,K1〉F 〈K2,K2〉F
, (9)

where〈· , ·〉F is the Frobenius inner product between two ma-
trices, andK1 andK2 are the Gram matrices with respective
entriesκ1(xi, xj) etκ2(xi, xj), for all i, j ∈ {1, . . . , n}. The
alignment then is simply the correlation coefficient between
the bidimensional vectorsK1 etK2.

For binary classification purpose, the decision statistic
should satisfyψ(xi) = yi, whereyi is the class label ofxi.
By settingyi = ±1, the ideal Gram matrix would be given by

K∗(i, j) = 〈ψ(xi), ψ(xj)〉 =

{

1 if yi = yj

−1 if yi 6= yj ,
(10)

in which case
√

〈K∗,K∗〉F = n. In [11], Cristianiniet al.
propose maximizing the alignment with the targetK∗ in or-
der to determine the most relevant reproducing kernel for a
given classification task. The ease with which this criterion
can be estimated using only training data, prior to any com-
putationally intensive training, makes it an interesting tool for
kernel selection. Its relevance is supported by the existing
connection between the alignment score and the generaliza-
tion performance of the resulting classifier. This has mo-
tivated various computational methods of optimizing kernel



alignment, including metric learning [14], eigendecomposi-
tion of the Gram matrix [11, 15] and linear combination of
kernels [16, 17]. We will focus on the latter of these issues,
which consider the kernel expansion

κα(xi, xj) =
m

∑

k=1

αkκk(xi, xj) (11)

and study the problem of choosing theαk ’s to maximize the
kernel-target alignment. A positivity constraint on theseco-
efficients is imposed to ensure the positive definiteness ofκα.
Some more or less efficient algorithms have been proposed in
the literature. In [16, 18], it has been shown that a concise
analytical solution exists in them = 2 case:

(α∗

1, α
∗

2) =







(α1, α2) si α1, α2 > 0
(1, 0) si α2 ≤ 0
(0, 1) si α1 ≤ 0,

(12)

with

α1 =
1

2

〈K1,K
∗〉F − 2〈K1,K2〉Fα2

‖K1‖2
F + λ

α2 =
1

2

(‖K1‖
2
F + λ)〈K2,K

∗〉F − 〈K1,K2〉F 〈K1,K
∗〉F

(‖K1‖2
F + λ)(‖K2‖2

F + λ) − 〈K1,K2〉2F
,

whereλ ≥ 0 arises from a regularization constraint penaliz-
ing ‖α‖2. To combine more than2 kernels, we opted for a
branch and boundapproach. It starts from the best available
kernel, and selects from the remaining kernels the one which
best increases the alignment criterion. This procedure is iter-
ated until no improving candidates can be found.

5. TIME-FREQUENCY FORMULATION

By placing time-frequency based classification within the
larger framework of kernel machines, we can take advantage
of concepts and tools that have been developed above. In this
section, we focus on selecting time-frequency distributions
appropriate for binary classification tasks. That is, we con-
sider the maximization problem

Φ∗ = arg max
Φ

〈KΦ,K
∗〉F

n
√

〈KΦ,KΦ〉F
, (13)

whereKΦ is the Gram matrix associated withCΦ
x . We also

discuss how to improve performance by optimally combining
several time-frequency distributions.

Before proceeding, note that the experiments were run on
64-sample data generated according to the hypothesis test

{

ω0 : x(t) = w0(t)
ω1 : x(t) = w1(t) + e2jπ[φ(t)+φ0],

(14)

whereφ(t) is a quadratic phase modulation andφ0 the initial
phase. The noisesw0(t) andw1(t) are zero-mean, Gaussian
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Fig. 1. Adjustment of the window size of a spectrogram using the kernel-
target alignment. Comparison with the error rate of a SVM classifier.

and white with variancesσ2
0 andσ2

1 , respectively. They were
fixed to 2.25 for the first two experiments, andφ0 was con-
sidered a random variable uniformly distributed over[0, 2π[.
In the third experiment,σ2

0 andσ2
1 were set to9 and4, re-

spectively, andφ0 was fixed to0. For each experiment, a
training setA200 of size200 was generated with equal priors.
A test setT1000 of 1000 examples was also created to esti-
mate the generalization performance of kernel-optimal SVM
classifiers trained onA200.

5.1. Parameter setting

The first illustration deals with parameter setting of time-
frequency distributions. Without any loss of generality, we
address the problem of adjusting the window size of a spec-
trogramSx with a view to maximize classification accuracy.
The reproducing kernel is then defined as

κsp(xi, xj) = 〈Sxi
, Sxj

〉. (15)

Figure 1 shows, as a function of the window size, the kernel-
target alignment ofκsp over the training setA200. It also in-
cludes the error rate of a SVM classifier trained and tested
onA200 andT1000, respectively. We note that the maximum
alignment is obtained with a window size of27, and coincides
with the lowest error rate. This shows that with a high align-
ment on the training set, we can expect a good generalization
performance of a kernel-based classifier.
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Fig. 2. Alignment and error rate for different kernels.



Fig. 3. Smoothed pseudo-Wigner (left), Wigner (middle), and composite associated with the kernelκspwv + 0.208 κwv (right). Here these distributions are
applied to the signal to be detected.

5.2. Selection of a distribution

The second illustration is concerned with the selection of a
distribution from a set of candidates. The latter consists of
the following distributions: Wigner (κwv), smoothed pseudo-
Wigner (κspwv), Margenau-Hill (κmh), Choï-Williams (κcw),
Born-Jordan (κbj), reduced interference with Hanning win-
dow (κridh), and spectrogram (κsp). Figure 2 shows the per-
formance averaged over50 independent realizations of the
training and test sets. It provides the alignment of the above-
mentioned kernels overA200, versus the error rate of a SVM
classifier trained and tested onA200 andT1000, respectively.
The apparent relationship between these two criteria empha-
sizes once more the relevance of the kernel-target alignment.

5.3. Combination of distributions

The last illustration focuses on the combination of time-
frequency distributions to achieve improvements in classifi-
cation performance. This problem was addressed with the
kernel-based process (11)-(12), which was applied to the
above-described set of candidate distributions. Kernelsκspwv

andκwv were successively selected. The kernel-target align-
ment increased from0.1039 to 0.1076, while the error rate
of the SVM classifier reduced from4.7% to 3.2%. Figure 3
presents the composite time-frequency distribution, applied
here to the signal to be detected.

Another experimentation was carried out by adding the
short-time Fourier transform to the above-mentioned set of
quadratic distributions. Note thatκstft(xi, xj) = 〈xi, xj〉 for
a normalized window. Kernelsκstft andκspwv were succes-
sively chosen, for a final alignment of0.1698 and an error
rate of2.7%. This result is consistent with statistical decision
theories since the log-likelihood ratio for the detection prob-
lem under consideration involves both linear and quadratic
components of the observation.

6. CONCLUSION

In this paper, we showed that specific reproducing kernels al-
low any kernel machine to operate on time-frequency repre-
sentations. We also proposed a method, based on the kernel-
target alignment, for selecting or combining time-frequency

distributions to achieve improvements in classification perfor-
mance. All these links offer new perspectives in the field of
non-stationary signal analysis since they provide an access to
the most recent methodological and theoretical developments
of pattern recognition and statistical learning theory.
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